
www.manaraa.com

AN EXAMINATION

OF

STABILITY AND REUSABILITY

IN HIGHLY ITERATIVE SOFTWARE

by

PATRICIA L. RODEN

A DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

The Department of Computer Science
to

The School of Graduate Studies
of

The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2008

www.manaraa.com

3338655

3338655
 2009

www.manaraa.com

 ii

Copyright by

Patricia L. Roden

All Rights Reserved

2008

www.manaraa.com

 iii

In presenting this dissertation in partial fulfillment of the requirements for a doctoral degree from The
University of Alabama in Huntsville, I agree that the Library of this University shall make it freely
available for inspection. I further agree that permission for extensive copying for scholarly purposes may
be granted by my advisor or, in his/her absence, by the Chair of the Department or the Dean of the School
of Graduate Studies. It is also understood that due recognition shall be given to me and to The University
of Alabama in Huntsville in any scholarly use which may be made of any material in this dissertation.

_______________________________________ ___________________

 (Student Signature) (Date)

www.manaraa.com

 iv

DISSERTATION APPROVAL FORM

Submitted by Patricia L. Roden in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Computer Science and accepted on behalf of the Faculty of the School of Graduate Studies
by the dissertation committee.

We, the undersigned members of the Graduate Faculty of The University of Alabama in Huntsville,
certify that we have advised and/or supervised the candidate on the work described in this dissertation.
We further certify that we have reviewed the dissertation manuscript and approve it in partial fulfillment
of the requirements for the degree of Doctor of Philosophy in Computer Science.

___ Committee Chair
 (Date)

___ Department Chair

___ College Dean

___ Graduate Dean

www.manaraa.com

 v

ABSTRACT

The School of Graduate Studies

The University of Alabama in Huntsville

Degree Doctor of Philosophy College/Dept. Science/Computer Science

Name of Candidate Patricia L. Roden

Title An Examination of Stability and Reusability in Highly Iterative Software

 In this dissertation, we examine the stability and reusability of agilely developed

software. When considering stability, we wonder if the highly iterative nature of the agilely-

developed software would adversely affect software stability. When considering reusability,

from one standpoint we could suppose that the highly iterative nature of an agile process such as

the extreme programming paradigm, with less time spent on formal design and the continuous

emphasis on choosing the simplest approach to accomplish the task, would result in code which

would be less reusable. This seemed particularly true since in the past it has been a truism that

developing reusable software required additional work. On the other hand, because of the

emphasis on refactoring in highly iterative processes, the resulting code should be more

readable, simple, and perhaps therefore more reusable and stable.

First, we investigate the stability of software developed with an agile process utilizing

existing stability metrics. The relationship of these stability metrics with the Total Quality

Index (TQI) of the QMOOD Quality Model is also studied. Secondly, the well known

Chidamber and Kemerer metrics are examined in an effort to develop a model to predict faults

over the iterations of the agilely developed projects. Next, we investigate the relationship

between faults, refactoring, and reusability in software developed using an agile process.

Lastly, the expert reusability evaluations of software developed using a traditional plan-based

www.manaraa.com

 vi

method are compared to the reusability evaluations for the same applications developed using

agile methods.

Our results show that some of the existing object-oriented metrics show potential for

stability analysis. Our results also indicate TQI and stability might be used interchangeably in

some situations. The intercorrelation of the C&K metrics over our data set made developing

fault prediction models difficult and is similar to that experienced by some other researchers in

the past. We determine that faults and refactoring are related; however, our results did not show

a clear relationship between faults and reusability or refactoring and reusability. Lastly, our

results indicate that software developed using a traditional plan-based method is more reusable

than software developed using an agile method.

Abstract Approval: Committee Chair _______________________________________
 (Date)

Department Chair _______________________________________

Graduate Dean __

www.manaraa.com

 vii

ACKNOWLEDGMENTS

There are so many people who must be acknowledged for their contributions to

this very long awaited completion of my degree. First, I thank my advisor, Dr. Letha

Hughes Etzkorn, for her guidance, inspiration, attention and time devoted to this most

unusual degree program. I find her talents amazing, her insights remarkable, and her

gracious helpfulness inspiring. I also want to express my sincere gratitude to the

members of my committee: Dr. Harry Delugach, Dr. Sampson Gholston, Dr. Wei Li,

Dr. Pete Slater and Dr. Mary Ellen Weisskopf. The value of their time, effort, and

feedback is immeasurable. I must also thank Dr. Shamsnaz Virani for her help in the

collection and organization of the expert evaluations.

My deepest appreciation must be expressed to my family who have supported,

encouraged and endured this adventure. To my husband Randy, I thank him for his

tolerance of takeout dinners, less than spotless housekeeping and evenings of being

abandoned while I traveled to meetings in Huntsville or worked on this dissertation.

His patience, encouragement and love served as a strong foundation on which I could

lean. To my daughter Miranda, I thank her for the inspiration to complete this degree.

Our trips to Huntsville were a special time. We shared the joys and trials of completing

our degrees together. I don’t know many mothers who can count their daughter as one

of their colleagues as well as a best friend.

Most importantly, I must thank God for blessing me with the health to complete

this degree. May He receive the praise for what He continues to do in my life.

www.manaraa.com

 viii

TABLE OF CONTENTS

LIST OF FIGURES .. xii

LIST OF TABLES .. xiv

LIST OF ACRONYMS ... xvi

Chapter

1 Introduction ... 1

2 Background .. 6

 2.1 Agile Methods ... 7

 2.2 Extreme Programming ... 10

 2.2.1 Communication ... 12

 2.2.1.1 Pair Programming .. 12

 2.2.1.2 On-site Customer ... 14

 2.2.2 Simplicity .. 14

 2.2.2.1 Simple Design ... 15

 2.2.2.2 Refactoring .. 15

 2.2.3 Feedback .. 18

 2.2.3.1 Testing ... 19

 2.2.3.2 Continuous Integration .. 20

 2.3 Software Quality ... 20

 2.3.1 Stability .. 21

 2.3.2 Reusability ... 22

 2.4 Software Metrics ... 27

 2.4.1 Object-Oriented Metrics .. 28

www.manaraa.com

 ix

 2.4.1.1 Chidamber and Kemerer Metrics Suite (C&K) 29

 2.4.1.2 The QMOOD Quality Model .. 31

 2.4.2 Stability Metrics .. 33

 2.4.2.1 SDI Metric ... 35

 2.4.2.2 SDIe Metric .. 36

 2.5 Expert Judgment .. 36

 2.6 Academic Course Utilization in Software Research 38

3 Research Description ... 41

 3.1 Software Packages Examined in Empirical Studies .. 43

 3.1.1 Software Applications Implemented ... 44

 3.2 Tools Used in Empirical Studies ... 46

 3.3 Reusability Data Collection Using Human Evaluators 46

 3.3.1 Internal Consistency Reliability of the Questionnaire 48

 3.3.2 Description of Expert Evaluators .. 50

 3.3.3 Threats to Validity ... 51

 3.3.4 Interrater Reliability .. 53

 3.4 Detailed Description of Study 1 .. 54

 3.5 Detailed Description of Study 2 .. 55

 3.6 Detailed Description of Study 3 .. 56

4 Stability .. 58

 4.1 Validation of the SDIe Metric .. 58

 4.1.1 Project A Stability Analysis .. 61

 4.1.2 Project B Stability Analysis ... 64

www.manaraa.com

 x

 4.1.3 Project C Stability Analysis ... 66

 4.1.4 Project D Stability Analysis .. 69

 4.2 Comparison of Stability and TQI .. 71

 4.3 Discussion .. 79

5 The Relationship of Metrics and Faults ... 82

 5.1 Spearman’s Correlation ... 82

 5.2 Collinearity Analysis ... 83

 5.3 Discussion .. 85

6 The Relationships of Faults, Reusability and Refactoring 86

 6.1 Discussion ... 95

7 Comparison of Reusability of Software Developed Using Traditional
 Plan-Based Methods with Software Developed Using Agile Methods................ 96

 7.1 Discussion .. 101

8 Conclusions ... 102

 8.1 Stability .. 102

 8.2 C&K Metrics and Fault-Proneness .. 104

 8.3 Faults, Reusability and Refactoring .. 104

 8.4 Reusability of Traditionally Developed Software Compared to
 Agile Software .. 105

9 Future Research ... 106

APPENDIX A : Class Questionnaire ... 109

APPENDIX B : Package Questionnaire .. 114

APPENDIX C : Demographic Questionnaire .. 117

APPENDIX D : Evaluator Demographics ... 119

www.manaraa.com

 xi

APPENDIX E : Human Subjects Committee Approval ... 123

APPENDIX F : Package Rwg ... 126

APPENDIX G : Class Rwg ... 129

APPENDIX H: Collinearity Studies and Linear Regression Results 137

REFERENCES ... 141

www.manaraa.com

 xii

LIST OF FIGURES

Figure Page

4.1 Project A SDI Results ... 61

4.2 Project A SDIe Results ... 62

4.3 Project B SDI Results .. 64

4.4 Project B SDIe Results .. 65

4.5 Project C SDI Results .. 66

4.6 Project C SDIe Results .. 67

4.7 Project D SDI Results .. 69

4.8 Project D SDIe Results ... 69

4.9 Project A – TQI vs. Stability .. 74

4.10 Project B – TQI vs. Stability .. 75

4.11 Project C – TQI vs. Stability ... 76

4.12 Project D – TQI vs. Stability .. 77

4.13 Project E – TQI vs. Stability ... 78

6.1 Project A Unnormalized Comparison ... 88

6.2 Project A Normalized Comparison .. 88

6.3 Project B Unnormalized Comparison .. 89

6.4 Project B Normalized Comparison ... 89

6.5 Project C Unnormalized Comparison .. 90

6.6 Project C Normalized Comparison .. 90

6.7 Project D Unnormalized Comparison ... 91

6.8 Project D Normalized Comparison ... 91

www.manaraa.com

 xiii

6.9 Project E Unnormalized Comparison .. 92

6.10 Project E Normalized Comparison .. 92

7.1 Paired Evaluations Comparison .. 99

7.2 Unpaired Evaluations Comparison .. 100

www.manaraa.com

 xiv

LIST OF TABLES

Table Page

2.1 QMOOD Quality Factor Definition .. 31

2.2 QMOOD Design Properties .. 32

2.3 QMOOD Quality Factors and Design Properties Relationships 33

3.1 Traditional (Plan-based) Project Information .. 43

3.2 Agile Project Information .. 44

3.3 Project Relationships ... 45

3.4 Cronbach’s Alpha for Package Data ... 49

3.5 Cronbach’s Alpha for Class Data .. 50

4.1 Stability Data, SDI, and SDIe ... 60

4.2 Pairwise Spearman’s Rank Correlation between C&K metrics
 and the SDIe metric for Project A .. 62

4.3 Pairwise Spearman’s Rank Correlation between C&K metrics
 and the SDIe metric for Project B .. 65

4.4 Pairwise Spearman’s Rank Correlation between C&K metrics
 and the SDIe metric for Project C .. 67

4.5 Pairwise Spearman’s Rank Correlation between C&K metrics
 and the SDIe metric for Project D .. 70

4.6 Stability and Quality Values .. 73

4.7 Spearman’s Correlation of Stability Metrics and TQI .. 79

5.1 Spearman’s Correlation of C&K vs. Faults ... 83

6.1 Faults, Refactoring and Reusability .. 87

6.2 Spearman’s Rank Correlation of Faults, Refactoring and Reusability 94

7.1 T-Test Values for Testing Reusability ... 101

www.manaraa.com

 xv

H.1 Collinearity Analysis of Model 1 ... 138

H.2 Collinearity Analysis of Model 2 ... 138

H.3 Linear Regression of Model 2 .. 138

H.4 Collinearity Analysis of Model 3 ... 139

H.5 Linear Regression of Model 3 .. 139

H.6 Collinearity Analysis of Model 4 ... 139

H.7 Linear Regression of Model 4 .. 140

www.manaraa.com

 xvi

LIST OF ACRONYMS

AM Agile Modeling

ANA Average Number of Ancestors

ASD Adaptive Software Development

C&K Chidamber and Kemerer Metrics

CAM Cohesion Among Methods of Class

CBO Coupling Between Objects

CIS Class Interface Size

DAM Data Access Metric

DCC Direct Class Coupling

DIT Depth of Inheritance Tree

DSC Design Size in Classes

DSDM Dynamic Systems Development Method

FDD Feature-Driven Development

FSSEC Fire Support Software Engineering Center

ISD Internet Speed Development

ISO/IEC International Organization for Standardization/International
 Electrotechnical Commission

LCOM Lack of Cohesion in Methods

LOC Lines of Code

MFA Measure of Functional Abstraction

MOA Measure of Aggregation

NIH Not Invented Here

www.manaraa.com

 xvii

NOC Number of Classes

NOH Number of Hierarchies

NOM Number of Methods

NOP Number of Polymorphic Methods

QMOOD Quality Model for Object-Oriented Design

RFC Response for a Class

SDI System Design Instability Metric

SDIe System Design Instability Metric with Entropy

SPSS Statistical Package for the Social Sciences

TFC Total Function Calls

TQI Total Quality Index

VIF Variance Inflation Factor

WMC Weighted Method Per Class

XP Extreme Programming

www.manaraa.com

 1

CHAPTER 1

INTRODUCTION

 The introduction of agile software development methods to the software

engineering landscape has led to questions and controversy concerning their usefulness

and appropriateness, as well as the quality of the resulting projects. There are

proponents who point to the traits of flexibility, embracing change and continuous

testing as strengths [Nerur and Balijepally, 2007]. Others point to the lack of planning

and required documentation as negative characteristics of the agile paradigm stating that

it seems to be “nothing more than an attempt to legitimize hacker behavior” as

compared to the traditional, or plan-based models [Rakitin, 2001]. A third group points

out that both the agile and traditional methods have their strengths and weaknesses and

for some applications one method may be more suited than the other [Boehm and

Turner, 2004].

 As the need for timely economically successful software development increases,

management decisions become more critical. In order to aid software project managers

in making an educated selection between the traditional plan-based method and an agile

method for a particular application, research into the application of each method and the

resulting product must be investigated. Advantages and disadvantages concerning the

www.manaraa.com

 2

characteristics of time needed, quality of the product, reusability, and maintainability

must be considered. Barry Boehm stated that “Both agile and plan-driven methods

have a home ground of project characteristics in which each clearly works best and

where the other will have difficulties” [Boehm, 2002].

Four major reports on the characteristics of agile methods and summary of the

research already completed have been presented [Abrahamsson et al., 2002; Cohen

et al., 2004; Erickson et al., 2005; Dybå and Dingsøyr, 2008]. Many of the research

studies, however, have limited their view to one or the other method without making

comparisons [Kivi et al., 2000; Wood and Kleb, 2003; Müller and Tichy, 2001]. Other

articles have been concerned with comparing the practices of the two methods with only

anecdotal data [Huo et al., 2004; Williams, 2001].

Several researchers in the discipline have cited the need for significantly more

empirical research in the area in order to provide advice and guidance for decision

makers concerning which method would be best suited for their needs [Brilliant and

Knight, 1999; Layman, 2004; Dingsøyr et al., 2008; Abrahamsson et al., 2003; Dybå

and Dingsøyr, 2008]. Empirical research is defined by Brilliant and Knight as “analysis

based on the observation of actual practice for the purpose of discovering the unknown

or testing a hypothesis.” Not only is it recommended that the number of empirical

studies be increased, but also the quality of these studies be enhanced through

improving research methodology [Dingsøyr et al., 2008]. Zannier et al. studied twenty-

nine International Conference on Software Engineering Proceedings with regard to

quantity and quality of empirical studies. Their results demonstrated an increase in the

number of empirical studies through the years but did not demonstrate an increase in the

www.manaraa.com

 3

soundness of such studies [Zannier et al., 2006]. For industry to utilize the results of

empirical studies, they must be conducted in a manner with high validity to provide a

level of trust. The relevance of a study is expanded when it is repeated by other

research groups on new populations [Sjøberg et al., 2007]. Increasing the interaction of

academia and industry, allocating more resources for empirical research and developing

a focus for the areas of empirical research are also needed [Sjøberg et al., 2007].

Research in the area of the agile methods is falling behind the practice of

utilizing these methods [Ågerfalk and Fitzgerald, 2006]. The rate of increase in the

application of agile methods has outdistanced the increase in agile research. Because

the agile methods bring to the software engineering arena a new set of practices and

topics such as pair programming, story cards, unit testing and refactoring, the areas for

research are increased even more, resulting in a heightened need. Research is needed

not only for the management who are making the decision to implement an agile

project, but also for the development team to better understand the development process

and “the complicated dynamics of agility” [Dingsøyr et al., 2008].

We spent the past several years introducing software engineering classes to the

traditional plan-based life cycle models used in the development of software projects.

In this context, we became very intrigued by the highly iterative approach used within

agile methods such as extreme programming and how the resulting projects compare to

the plan-based projects with regard to software qualities such as stability and

reusability. When considering stability, we wondered if the very highly iterative nature

of agilely-developed software would adversely affect software stability, relative to the

stability of software developed using plan-based methods, which typically employs

www.manaraa.com

 4

fewer or no iterations. This question has also been raised by others [A-PrimeSoftware,

2008]

When considering reusability, from one standpoint we could suppose that the

highly iterative nature of an agile process such as the extreme programming paradigm,

with less time spent on formal design and the continuous emphasis on choosing the

simplest approach to accomplish the task, would result in code which would be less

reusable. This seemed particularly true since in the past it has been a truism that

developing reusable software required additional work. On the other hand, because of

the emphasis on refactoring in highly iterative processes, the resulting code should be

more readable, simple, and perhaps therefore more reusable and stable. In fact, some

authors have claimed that developing reusable software within an agile paradigm is

quite achievable [Heinecke et al., 2003]. Some authors go further and imply that the

intrinsic characteristics of the agile paradigm tend to result in reusable software

[Knoernschild, 2006]. In particular, some authors have argued that refactoring, which is

an integral part of most agile software processes, particularly improves reusability of

software [Moser et al., 2006].

In this dissertation, we investigate the stability of software developed using an

agile process using existing stability metrics. As part of our stability analysis, we

compare existing stability metrics to some existing object-oriented metrics over several

iterations of agilely developed software. Our results show that some of these existing

object-oriented metrics show potential for stability analysis. Our primary stability

analyses are discussed in Chapter 4. Although stability is often defined in terms of

degree of modification of the software [Alshayeb and Li, 2005], it is also sometimes

www.manaraa.com

 5

defined in terms of number of faults [Boudnik, 2008; Repenci, 2008], although this

might more accurately be termed software reliability. Since stability is sometimes

defined in terms of faults, in Chapter 5, we also investigate the utility of the Chidamber

and Kemerer (C&K) metrics suite [Chidamber and Kemerer, 1994], probably the best

known object oriented software metrics suite, as fault predictors over our data set.

Additionally, in Chapter 6, we investigate the relationship between faults,

refactoring, and reusability in software developed using an agile process. Again, since

stability is sometimes defined in terms of faults, our analysis of faults versus refactoring

represents an additional investigation of stability. Our comparison of faults and

refactoring to reusability is part of our investigation of the reusability of agilely

developed software. Finally, in Chapter 7, we also compare the reusability of software

developed using an agile process to the reusability of software developed using a plan-

based process.

The data we used in our empirical analyses was collected in senior software

engineering courses taught by two different professors at two different universities

across multiple semesters. Our overall research plan and methodology, including an in-

depth description of the data analyzed, is provided in Chapter 3.

Background required to understand our work is in Chapter 2. Conclusions and

Future Research are in Chapters 8 and 9, respectively.

www.manaraa.com

 6

CHAPTER 2

BACKGROUND

 The inaugural use of the term “Agile Method” can be credited to the attendees at

a meeting in Snowbird, Utah in February 2001. This meeting consisted of a group of

seventeen leaders in a field which up to that time had been called “lightweight.” The

outcomes of the meeting were a document called the “Agile Manifesto” and a group

named the “Agile Alliance.”

 The “Manifesto for Agile Software Development” [Agile Manifesto, 2008]

states that

“We are uncovering better ways of developing software by doing it and helping others

do it. Through this work we have come to value:

 Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the

left more” [Agile, 2008].

www.manaraa.com

 7

2.1 Agile Methods

The agile methods are recognized as possessing such traits as the use of short

iterations, early and planned testing, pair programming and feedback loops. These

characteristics seem to support the method name of agile which is defined as “moving

quickly and easily, active, lively and nimble.” According to Highsmith, “Agile methods

stress two concepts: the unforgiving honesty of working code and the effectiveness of

people working together with goodwill” [Highsmith, 2001]. The use of story cards,

standup meetings, and the focus on teamwork are also seen in agile methodology.

Unlike the traditional life cycle models which have been given the name of “plan-

driven” by Barry Boehm [Boehm, 2002], agile methods welcome change at any time,

even late in the development process, encourage a close association with the customer,

continually look for ways to keep things simple, and provide a climate where

developers can be productive, motivated, and feel a sense of trust in their ability to get

the job completed [Paulk, 2002]. Highsmith states that “agile development defines a

strategic capability, a capability to create and respond to change, a capability to balance

flexibility and structure, a capability to draw creativity and innovation out of a

development team, and a capability to lead organizations through turbulence and

uncertainty” [Highsmith, 2002].

 There are many methods for software development which are classified as agile.

These include Adaptive Software Development (ASD), Dynamic Systems Development

Method (DSDM), Feature-Driven Development (FDD), Internet-Speed Development

(ISD), the Crystal family of methods, Agile Modeling (AM), Scrum, and Extreme

Programming (XP). In the article “New Directions on Agile Methods: A Comparative

www.manaraa.com

 8

Analysis” the authors present an evolutionary map of these methods [Abrahamsson,

2004]. The Adaptive Software Development method was developed by Highsmith and

Bayer as a method of developing large complex software systems [Abrahamsson,

2003]. Pressman describes the process as a three step life cycle consisting of

speculation in which planning is performed and release cycles are defined, collaboration

in which requirements are gathered, and learning using focus groups, formal technical

reviews, and postmortems [Pressman, 2005]. ASD consists of six essential principles: a

mission setting forth a target at which to aim, a set of features representing the value to

the customer, iterations where change is viewed positively, set delivery times for each

version, and the most difficult tasks are addressed first by embracing risk [Pfleeger and

Atlee, 2006].

Dynamic Systems Development Method (DSDM) can be traced to a January

1994 meeting of sixteen rapid application developers in the United Kingdom

[Abrahamsson, 2003]. It was published in January 1995 after its creation by a

consortium of organizations which take the responsibility of being “keepers” of the

method [Pressman, 2005; Larman and Basili, 2003]. DSDM follows a eighty percent

rule which states that eighty percent completion of an iteration is enough to move on to

the next iteration. The method consists of two activities: feasibility study and business

study followed by three iterative cycles: functional model iteration, design-and-build

iteration and implementation [Pressman, 2005]. DSDM has been widely adopted in

Europe and especially the UK [Beynon-Davies and Williams, 2003].

Feature-Driven Development (FDD) was developed by Jeff De Luca and Peter

Coad while working on a large commercial lending application for a Singapore bank in

www.manaraa.com

 9

1997 [Abrahamsson, 2003]. The method consists of five basic steps or activities:

Develop an Overall Model, Build a Features List, Plan by Feature, Design by Feature,

and Build by Feature. FDD also makes use of six milestones per feature: “domain

walkthrough, design, design inspection, code, code inspection, and promote to build”

[Pressman, 2005]. Internet-Speed Development (ISD) is a framework which is

characterized by quality dependencies, process adjustments, and time drives

[Baskerville et al., 2001]. ISD is useful in development situations when a quick release

time is critical [Abrahamsson, 2003]. The Crystal family is a collection of methods

created by Alistair Cockburn and Jim Highsmith based on the concept that each project

needs the ability to maneuver using the most appropriate crystal family method

[Pressman, 2005; Abrahamsson, 2003]. The belief that the major influence on the

quality of a project is the people involved and their communication through short

delivery cycles is another foundation of the Crystal family of methods [Pfleeger and

Atlee, 2006].

Agile Modeling (AM) is an approach to modeling which encourages the support

of documentation and design needs by creating advanced models. AM is to be used in

conjunction with another agile process method [Ambler, 2002]. Agile Modeling is

described using a set of core principles which are extremely similar to those of Extreme

Programming. There are also a set of supplementary principles as well [Pressman,

2005]. These principles result in a set of core and supplementary practices [Ambler,

2002].

 Scrum is an agile method developed by Jeff Sutherland and named after a term

used in rugby referring to a group of eight players formed around a ball to move it down

www.manaraa.com

 10

the field [Rising and Janoff, 2000]. Scrum was created in 1994 at Object Technology

and Schwaber and Beedle are credited with commercializing it [Pressman, 2005].

Scrum uses iterative development making use of “sprints,” one to four week iterations,

which deliver the project incrementally following the initial planning. A “backlog”

consisting of a list of identified requirements is used to direct the project team’s activity

[Rising and Janoff, 2000]. Short, daily fifteen to thirty minute meetings which are

called “scrums” are led by a “scrum master” [Pfleeger and Atlee, 2006]. Three

questions are asked of each team member at the meetings:

1. What have you completed, relative to the backlog, since the last Scrum

 meeting?

2. What obstacles got in your way of completing this work?

3. What specific things do you plan to accomplish, relative to the backlog,

 between now and the next Scrum meeting? [Rising and Janoff, 2000].

Scrum is beneficial in situations where requirements are not easily delineated at the

beginning of the project and where there is an expectation of chaos during development

[Rising and Janoff, 2000]. In fact, according to Pressman, the most often cited website

related to Scrum is www.controlchaos.com [Pressman, 2005].

2.2 Extreme Programming

One very well known agile method is Extreme Programming [Beck, 2000]. In a

study Dybå and Dingsøyr conducted concerning articles published on agile methods

through the year 2005, seventy-six percent were dedicated to Extreme Programming

[Dybå and Dingsøyr, 2008]. Extreme Programming (XP) is described as having four

www.manaraa.com

 11

values: Communication, Simplicity, Feedback, and Courage and four basic activities:

Listening, Designing, Coding, and Testing. The four values give rise to fifteen

principles: Rapid Feedback, Assuming Simplicity, Incremental Change, Embracing

Change, Quality Work, Teaching Learning, Small Initial Investments, Playing to Win,

Concrete Experimentation, Open, Honest Communication, Working with People’s

Instincts, Accepted Responsibility, Local Adaptation, Traveling Light, and Honest

Measurement. The four basic activities, sometimes called the technical backbone of the

process, result in twelve recognized practices: the Planning Game, Small Releases,

Metaphor, Simple Design, Testing, Refactoring, Pair Programming, Collective

Ownership, Continuous Integration, Coding Standards, On-site Customer, and the 40-hr

Week [Hislop et al., 2002].

 Although Extreme Programming has been on the software development scene

for several years and much has been written on the subject, most of the literature

concerning XP is lacking in concrete scientific analysis of the evidence of how well it

works. One attempt to seek rationale for the Extreme Programming practices was

conducted by Kähkönen and Abrahamsson using the 5-A model for knowledge creation,

which is a theoretical framework proposed by Nonaka and Takeuchi. Kähkönen and

Abrahamsson concluded that the Extreme Programming practices enhanced knowledge

creation through “immediate (or frequent) and mutual articulation and appropriation.

The practices anticipate only in short intervals and accumulate tacit knowledge in

socially shared meaning structures rather than explicit knowledge in

documents.”[Kähkönen and Abrahamsson, 2003] Kuppuswami reported on the

development of a simulation to model the effect of the twelve extreme programming

www.manaraa.com

 12

practices which demonstrated a reduction in cost for a software development effort

[Kuppuswami et al., 2003].

2.2.1 Communication

 Communication is not just encouraged in multiple areas of Extreme

Programming but is required. This encompasses the face-to-face interaction between

the customer and the programming team, the communication with management, the

communication between programming pairs and within each pair [Williams, 2003].

The method of communication differs as well. First, communication is immediate in

informal sessions or in daily stand-up meetings to give a brief progress report.

Secondly, instead of the customer describing requirements and the team preparing a

lengthy specification document, the Extreme Programming team produces a series of

user story cards which are prioritized and with the customer’s recommendation

implemented in a series of iterations. Continuous input from the on-site customer will

be discussed later. The lack of a formal specification document leads to one of the

major criticisms of the Extreme Programming methodology which is the lack of

extensive documentation.

2.2.1.1 Pair Programming

 Another practice of the Extreme Programming process is the use of pair

programming, two programmers working side by side at one computer in order to

accomplish a task. The old adage “Two heads are better than one” has been supported

with the research into the quality of the results generated by pair programming

www.manaraa.com

 13

alternatively called “collaborative programming.” Although it might first be thought

that since two programmers are working at only one computer, only half as much work

as if the two were working separately will be accomplished , that is not in fact the case.

Some studies give evidence that the two programmers working as a pair produce more

code than two solo programmers and the pair programmers produce “better” code

[Williams and Kessler, May 2000]. The qualities of the code which would make it

“better” include more efficient, tighter, possessing less defects, and having more

simplicity [Williams et al., 2000].

 Other benefits of pair programming have been documented by Williams and

Upchurch [Williams and Upchurch, 2001]. The economics of pair programming is

described as being enhanced by savings in code development time, quality assurance,

and field support costs. The satisfaction in the working environment was also pointed

to as a benefit of pair programming. The process of continually reviewing their code,

learning from their pair partner, placing positive pressure on their partner to be

productive, focused on the task at hand, and punctual, and the development of

communication skills also make pair programming attractive.

 Many reasons for the documented success have been proposed. First, while one

programmer is “driving” at the keyboard, the other programmer is free to view the

project from a more strategic viewpoint, locating defects earlier. The pairs

continuously review and refactor their work, trying to simplify it in order to reach the

best solution. They bring together two set of eyes to detect errors and two sets of ideas

in order to reach an effective, efficient implementation [Williams and Kessler,

December 2000].

www.manaraa.com

 14

 The practice of pair programming certainly supports the extreme programming

value of communication. Beck also points out that some of the other extreme practices

would not work without pair programming. Without the use of pair programming,

testing might be ignored, refactoring might be delayed and integration might be avoided

until too late [Beck, 2000].

2.2.1.2 On-site Customer

 The availability of an on-site customer to answer questions, help develop tests,

help set priorities, develop user stories, and settle disputes is cited as invaluable to the

extreme programming project. The on-site customer has the final say concerning issues

such as what must be done (which are placed on user story cards), what order to

implement the user stories, and what level of quality is required. This person should be

someone who will be intimately involved in the use of the product when it is completed.

Although many companies hesitate to release one of their employees to be the on-site

customer, after successful delivery of the first few iterations the attitude changes. “The

project is steered to success by the customer and programmers working in

concert”[Jeffries et al., 2001].

2.2.2 Simplicity

 “Simplicity – the art of maximizing the amount of work not done – is essential”

[Principles behind the Agile Manifesto, 2008]. This statement represents one of the

core values of extreme programming. Programmers are encouraged to leave the

product in the simplest form possible and to do the simplest thing that will work with

www.manaraa.com

 15

the smallest practical number of classes and methods. Any duplicate logic or extra

complexity is removed as soon as it is detected. This process is called refactoring (and

will be further discussed later). This attitude is in opposition to the traditional approach

to build in as much flexibility as possible in an effort to be prepared for what tomorrow

might bring. The concept of simplicity applies to all areas of the product:

communication, design, code and testing.

2.2.2.1 Simple Design

 According to Beck, the strategy for design in Extreme Programming is to have

the simplest design that runs the designated tests, which are always constructed first.

Beck goes on to define what is meant by “simplest.” A simplest design results in a

system which communicates what is needed, has no duplicate code (sometimes called

the Once and Only Once rule), has the fewest possible classes, and the fewest possible

methods [Beck, 1999]. A simple design leads to easier communication and because of

the short iterations, feedback allows for quick verification of the design.

2.2.2.2 Refactoring

 Refactoring is the disciplined process of software evolution through techniques

which reduce software complexity, improve software quality, and improve internal

structure while leaving the behavior of the code intact. This term was originally

introduced by Opdyke to represent restructuring as defined by Chikofsky and Cross in

“Reverse Engineering and Design Recovery: A Taxonomy” to be “the transformation

www.manaraa.com

 16

from one representation form to another at the same relative abstraction level, while

preserving the subject system’s external behavior” [Chikosfsky and Cross, 1990].

The preservation of behavior could refer to preserving the resulting output

values corresponding to given input values, preserving temporal constraints such as the

execution time of certain operations or sequences, or preserving the power consumption

and memory constraints for embedded software [Mens and Tourwé, 2004]. The use of

preconditions, invariants and postconditions often expressed in predicate calculus is one

method of representing this preservation. The presence of documented tests prepared to

demonstrate behavior is essential.

 The study of refactoring has resulted in classification of refactoring techniques

into primitive refactorings which are elementary building blocks which can be used to

create composite refactorings. Examples of primitive refactorings include renaming a

variable, class, or method, moving a method up to super-class, adding a super-class,

moving a method from a super-class down to a sub-class, extracting a method from

another method, and replacing a conditional (if or switch) with a polymorphism.

 Refactoring is often performed in response to something called “bad smells,”

undesirable characteristics of code [Fowler, 1999]. For example, one “bad smell” might

be a method which is too long. The greater the length of the method, the more difficult

it is to understand its purpose. A refactoring might extract another method from the

longer method. A long parameter list might be simplified by replacing it with a method

in order to pass in enough so that the original method can get to everything it needs.

Duplicated code might be removed by extracting a method, pulling up a field, forming a

template method or extracting a class. Inconsistent or uncommunicative names may be

www.manaraa.com

 17

replaced using the rename refactoring technique. Dead code which includes variables,

parameters, methods, code fragments, and classes can be removed by the Delete Code

primitive refactoring technique [Fowler, 1999].

 Refactoring can be considered as a continual process of quality improvement.

Quality attributes which may be considered when refactoring include reusability,

robustness, extensibility and performance. Other benefits can improve ease in future

modification, ease in spotting a bug when debugging, more comprehensible code, and

less error prone code. The benefits of refactoring are not always immediately realized

in the short term, but more often seen in the long term.

 There are two methods for performing refactoring: manual and automated.

Manual refactoring is performed by an individual or pair of programmers and requires

the need to rebuild and run tests frequently. If the system containing the refactored

code can be rebuilt quickly, and there exist automated regression tests, then manual

refactoring may be feasible. If not, automated refactoring might be considered if there

exist tools appropriate to the language or the type of code. Automated refactoring is

generally quicker, easier, and less tedious, and reduces the chance of bugs being

introduced into the project. Automated tools may be integrated into the IDE selected

by the development team which will make refactoring even easier and will tend to make

the developers view refactoring as just another facet of their development process.

 The area of refactoring has been studied from several different viewpoints. One

approach has been to consider only one category of refactoring. Another strategy is to

study refactoring dedicated to only one language. Early studies of this type involved

Smalltalk. Later studies have attempted to develop language independent refactoring

www.manaraa.com

 18

techniques [Tichelaar et al., 2000]. Several studies involve developing automated

support for refactoring [Kataoka et al., 2001; Maruyama and Shima, 1999; Jeon and

Bai, 2002]. Yet other studies attempt to use graph theory to support the process of

refactoring [Maruyama and Shima, 1999]. Refactoring using design patterns has also

been studied [France et al., 2003]. Grammar based refactoring has also been reported

[Kosar et al., 2004]. Still others look at refactoring as applied to different categories of

problems like embedded systems, real-time systems, and database management systems

[Mens and Tourwé, 2004].

2.2.3 Feedback

 As one of the common threads which bind the agile methods together as a

group, feedback is one of the fifteen underlying principles of Extreme Programming.

The small releases, continuous testing and integration, pair programming, and on-site

customer are all practices which contribute to this principle. Kähkönen and

Abrahamsson concluded in their study of knowledge management theories as applied to

extreme programming that several of the XP practices serve to encourage a greater

understanding of the project between the customer and developer and within the

development team [Kähkönen and Abrahamsson, 2003]. The principle of rapid

feedback is substantially supported by letting participants talk to each other instead of

the more traditional document driven approach. The physical arrangements of pair

programmers and on-site customers also encourage feedback. Scott points out that

“without proper control of the feedback this communication could destabilize the team

and halt its release of software.” He further points out that it is the combination of all

www.manaraa.com

 19

twelve Extreme Programming practices that make sure that the team stays on target and

reaches its goal [Scott, 2003].

2.2.3.1 Testing

 The emphasis on testing as one of the twelve practices of Extreme Programming

results in its description as “test-driven.” It is described as being an incremental design

approach which is motivated by passing tests. The cycle of writing a unit test, writing

the code, performing the test, and refactoring the code is to occur with great frequency

in an Extreme Programming project. Testing actually occurs in the form of both unit

tests and functional tests. Unit testing is testing performed on an individual

programming component such as a class. Unit tests which are created by the developers

and permanently saved for daily regression testing must be passed with a grade of 100%

before any more work or functional testing occurs. In fact, Beck states that “If there is a

technique at the heart of XP, it is unit testing” [Beck, 1999]. Automated tools exist

which support the creation and maintenance of unit tests. Because testing goes on

several times a day, these automated tools are almost a necessity. On the other hand,

functional testing is concerned with the testing of a group of classes that implements a

performance whose description is provided by the user or customer [Smith and

Stoecklin, 2001]. These functional tests which correspond to a user story serve in the

final validation of the project. The successful passing of functional tests can serve to

demonstrate the progress on the project and can build confidence in the work

accomplished.

www.manaraa.com

 20

2.2.3.2 Continuous Integration

 The practice of integrating as soon as a unit has been tested results in reducing

the number and size of conflicts which occur when code is integrated. A programming

pair would integrate at least once a day into the code base. This also serves to reduce

the cost of integration as supported by an integrated development environment and to

provide a repository to aid each programming pair to maintain the direction of their

work. It also provides almost immediate feedback to the developers. As with the

results of testing in Extreme Programming, the practice of continuous integration can

subsequently produce confidence in the project. At all times there is a working subset

of the project along with a suite of tests which demonstrate the continued correctness of

the subset.

2.3 Software Quality

 The definition of software quality is elusive, multidimensional, and

controversial. Of course, if we are to attempt to measure software quality directly or

indirectly, a good definition is necessary. Kitchenham and Pfleeger reported a study

they conducted in 1995 in which they solicited the definition of software quality

[Kitchenham and Pfleeger, 1996]. The responses were classified according to the five

different perspectives of quality set forth by David Garvin:

 the transcendental view which sees quality as being recognizable but unable to

be defined,

 the user view which sees quality as the fitness for purpose,

 the manufacturing view which sees quality in the specification conformance,

www.manaraa.com

 21

 the product view which sees quality associated with the product characteristics,

 the value-based view which sees quality relative to the amount of money a

customer is willing to pay [Gavin, 1984].

The ISO/IEC 9126 software quality standard cites the six attributes of functionality,

reliability, usability, efficiency, portability and maintainability relating to software

quality. This standard further lists the attributes of analyzability, testability,

changeability, and stability as contributing to maintainability [ISO/IEC 9126, 1991].

2.3.1 Stability

 Elish and Rine point out that “stability is one of the most desirable features of

any software design” and state that when a design is not stable the reliability will likely

suffer and the maintenance will be more costly [Elish and Rine, 2003]. Stability is

touted as a quality factor indicating maturity [Mattsson and Bosch, 1999]. One

encounters a variety of definitions of stability in the literature. It is sometimes defined

as the ease of software evolution while preserving the software design [Grosser et al.,

2003; Elish and Rine, 2005]. Stability has also been described as a characteristic of

software in that it can remain architecturally intact through evolutionary changes.

Stability may be considered using structural, behavioral, or economical changes.

However, structural changes are most often used due to the ease of automation [Tonu

et al., 2006]. Software stability may be considered to be an indicator within a software

project’s life where changes to one class will not likely spread or ripple to other classes

in the design. Logical and performance stability are two categories of stability. Logical

www.manaraa.com

 22

stability is concerned with the structure of the design while performance stability is

related to the behavior of the design [Elish and Rine, 2003].

Stability is often defined in terms of degree of modification of the software

[Alshayeb and Li, 2005]. However, other authors have defined stability in terms of

faults (though this could more properly be termed reliability rather than stability). For

example, Repenci defined software stability ratings for software releases based largely

on level and kind of faults [Repenci, 2008].

Bansiya used the extent-of-change metric to measure the stability of a

framework structure and applied his work to a study of the Microsoft Foundation

Classes (MFC) and Borland Object Windows (OWL) application frameworks [Banisya,

2000]. Grosser et al. made use of case-based reasoning and similarity based approach

to predict stability. Case-based reasoning had already been used for modeling

correctability [Almeida et al., 1999], reusability [Esteva and Reynolds, 1991] and

reliability [Ganesan et al., 2000]. Elish and Rine used the Chidamber and Kemerer

(C&K) metrics which will be discussed later in order to determine whether there is a

correlation with performance stability [Elish and Rine, 2003].

2.3.2 Reusability

 The growing cost and demand for software development has resulted in a

problem labeled for years as the software crisis. In an effort to address this issue and

reduce time and cost, several concepts have been put forth as possible solutions. The

development of programming languages like Ada, commissioned by the United States

Department of Defense, was an effort to curb programming costs by encouraging

www.manaraa.com

 23

development of libraries of reusable packages. Other studies involving software reuse,

the automatic detection of reusable code, the intentional creation of reusable code, and

the storage and retrieval of reusable code have also been conducted [Dandashi, 2002;

Etzkorn and Davis, 1997; Kim, 1997; Kim and Stohr, 1992; Mambella et al.,1995].

 Reusability has been touted as a possible “silver bullet” to solve the software

crisis although others have stated that there is no silver bullet [Brooks, 1987; Fraser and

Manci, 2008]. Like other software qualities it is difficult to quantify and measure.

Software Reuse may be defined as “utilization of a software component C within

product P, where the original motivation for constructing C was other than for use in P”

[Schach and Yang, 1995]. It is viewed as a “means to improve the process of software

development and also the quality of the software produced” [Kim and Stohr, 1992].

The “reusability” of a software component is defined “as the extent to which a software

component can be used with or without adaptation in a problem solution other than the

one for which it was originally developed.” Furthermore, “software reuse is the goal

while software reusability is necessary in order to achieve this goal” [Kalagiakos,

2003].

 Nazareth points out that along with reduced cost and time, other benefits such as

improved software quality, greater knowledge sharing, improved maintainability,

adoption of standards, and increased productivity of developers can be the results of

reuse [Nazareth, 2004]. In an early study of the benefits of reuse, the Fire Support

Software Engineering Center FSSEC reported that the benefits of reuse included

www.manaraa.com

 24

14%-68% increase in productivity

20% reduction in customer complaints

25% reduced time to repair

25% reduced schedule

50% reduction in integration time

20%-35% improvement in quality

20% reduction in training costs

400% return on investment [Smith and Sodhi, 1994].

Learning what causes software to be more reusable can enhance our ability to

intentionally create software which is reusable. Characteristics which enhance a

software component’s reusability include how well the software conforms to standards

or style guidelines, the level of supporting information and the degree of testing

performed [Poulin, 1994]. Yet other traits enhancing reusability include

understandability, portability, generality, and retrievability. Ultimately, software is

considered reusable if the effort to reuse the software component is considerably less

than the effort to construct a similar functioning component [Prieto-Díaz, 1993].

 Kalagiakos addresses several non-technical issues which play a role in the reuse

of software. These issues include human factors, namely, the most widely recognized

obstacle to reuse called the NIH “Not Invented Here “ syndrome and the change to the

roles of people within the organization adopting the practice of reuse, contractual issues

such as “Cost-Plus” contracts which actually encourage redevelopment over reuse, and

certain legal issues with regard to the software rights [Kalagiakos, 2003].

www.manaraa.com

 25

 Reuse may be classified from a number of perspectives. One method involves

the actions which led to the reuse of the software. Namely, was it intentionally

constructed and planned to be reused or was the reuse an unplanned fortunate accident.

Another classification results from the types of applications in which the reuse occurs.

Vertical reuse occurs when software is reused within the same area of application or

domain. Horizontal reuse occurs when software is reused across different applications.

A third method of categorizing reuse has to do with whether the code is reused and

unchanged called black-box or “as is” reuse or white-box reuse which involves the

changing of code during reuse [Prieto-Díaz, 1993]. Black-box reuse is preferable since

it maximizes productivity. Reuse may also be classified as informal or formal.

Informal reuse may be management focused occurring from a perceived immediate

opportunity or programmer derived reuse of code from his/her personal library.

“Formal reuse is a process driven activity that requires common standards, procedures,

and practices applied consistently and universally across a given domain” [Smith and

Sodhi, 1994]. This definition of formal reuse seems almost to be a hybrid of vertical

and planned reuse.

 No matter what the classification, most sources agree with the opinion that reuse

is a desirable activity in an effort to reduce development cost and create more reliable

software. The advent of object-oriented programming as opposed to procedural or

imperative programming has been touted as producing reusable code since its

beginnings in the 1980’s [Meyer, 1996]. Bertrand Meyer stated object technology

produces the appropriate level of abstraction in order to enhance reusability. He further

states that “reusability in software is inseparable from adaptability” [Meyer, 1996]. The

www.manaraa.com

 26

use of instances of a class, the inheritance in object-oriented code which allows a

derived class to inherit from its parent class and the use of parametric polymorphism are

all forms of reuse. Although object-oriented code possesses these traits which could

lend it to reuse, there is an accumulation of object-oriented legacy systems designed

without thought of reuse [Etzkorn and Davis, 1997].

 There are many research areas involved in the study of reuse and reusability.

One area of research involves studying methods for creating reusable code or code with

a high potential for reuse. This process is sometimes referred to as “develop for reuse”

[Mambella et al., 1995]. Another area of study is concerned with methods for

recognizing reusable code. Two issues which need to be addressed when attempting to

recognize reusable code have to do with whether the code is useful to the new system

being constructed and whether the quality of the code satisfies the requirements of this

new system [Etzkorn and Davis, 1997]. Studies in this arena make use of classification

of code through such things as comments and identifiers used. A third area of research

surrounds the process of developing systems through reusing code called “develop with

reuse” [Mambella et al., 1995]. In order to support this development with reuse, there

has been a good amount of research in developing repositories of reusable code which

in turn leads to study in developing methods of classifying and retrieving code to be

reused from those repositories. Examples of methods for classifying and retrieving

code include the keyword approach used by Jones and Prieto-Díaz, the full-text

approach described by Frakes and Nejmeh and Maarek et al., the faceted approach

presented by Prieto-Díaz, the pattern matching through analogy approach used by

www.manaraa.com

 27

Maiden and Sutcliffe, and the use of a semantic encoding method proposed by Kim

[Kim, 1997].

2.4 Software Metrics

 The term “software metrics” has long been associated with the production of

numerical results to represent a quality of software [Coppick and Cheatham, 1992]. In

fact, the first use of the Lines of Code (LOC) metric can be seen as far back as the

1960’s [Fenton and Neil, 2000]. There is, however, a controversy as to whether these

values should be called metrics or measures and several documents present a discussion

on this topic [Pressman, 2005; Fenton and Neil, 1999]. In mathematics the term metric

usually refers to the concept of distance. Other areas of controversy arise from what

should be measured, how it should be measured, and what scale should be used to

express the measurement. Several articles have been written to express the opinion that

measurement theory should be applied to the area of metrics [Zuse, 1996; Poels and

Dedene, 2000; Garcia et al., 2005; Hintz and Montazeri, 1996; Fenton, 1994]. The use

of metrics can be applied to all phases in the development process. They can be

computed in an effort to measure attributes such as maintainability, understandability,

modifiability, complexity, usability, testability, reliability, reusability, and many more

[Zuse, 1989]. The computation of these numerical results is performed in an effort to

enhance the development process, aid the developer to understand their progress, guide

management concerning the project health and schedule and ultimately lead to a higher

quality project for the customer [Pfleeger et al., 1997]. Metrics can be calculated as a

www.manaraa.com

 28

point value at a given time or can represent a cumulative value over a period of time

[Schroeder, 1999].

 Software metrics may be categorized according to how they are used. Process

metrics, measures of properties of the software development process, are used for

planning and support of management activities [Meyer, 1998] [Clark, 2002]. They help

predict the status of a project for management and help estimate the effort which will be

required. They further help management determine whether a project is on schedule.

Product metrics are used for guidelines for improvement or comparison between

existing systems [Schroeder, 1999]. They can be used for “addressing risks and

problems earlier” [Clark, 2002]. They can also be used to predict faults [Tang, 1999].

Product metrics may be further categorized as external or internal. External product

metrics measure qualities which are detectable by users of the software product.

Internal product metrics have to do with attributes which are only detectable by the

development team [Meyer, 1998]. Schroeder states “You use both product and process

metrics, generally in conjunction, to assess the project as a whole” [Schroeder, 1999].

2.4.1 Object-Oriented Metrics

A multitude of software metrics have been proposed for object-oriented

software. According to Schroeder these metrics can be placed into four categories:

System Size, Class or Method Size, Coupling and Inheritance, and Class or Method

Internals [Schroeder, 1999]. Examples of system size metrics are Lines of Code (LOC),

Total Function Calls (TFC), and Number of Classes (NOC). Class or Method Size

metrics include LOC per class or method, number of methods per class, and number of

www.manaraa.com

 29

attributes per class. Coupling and Inheritance metrics demonstrate the degree of

interdependencies between objects which will have effect on the ability of reuse of the

objects. Examples include Class Fan-in, the number of classes depending on a given

object, Class Fan-out, the number of classes upon which an object depends, Class

Inheritance Level, and Number of Children per Class. The Class and Method Internals

metrics support the measurement of quality at the class and method level. These

include Number of Global References, Method Complexity, Number of Public

Attributes per class, Percent of Commented Methods, and Number of Parameters per

method [Schroeder, 1999].

2.4.1.1 Chidamber and Kemerer Metrics Suite (C& K)

One of the first, most analyzed and most referenced suites of object-oriented

metrics is the group of metrics proposed by Chidamber and Kemerer. These metrics

were proposed with firm theoretical foundations and developed to be useful to software

development organizations. The suite consists of six metrics:

 Weighted Methods per Class (WMC). The WMC metric measures the

complexity of a class by considering the sum of the complexity of each of the

methods. The larger the WMC number indicates a class with high complexity

which will be less likely to be reused. Chidamber and Kemerer did not

explicitly define complexity but stated it was left as an implementation decision.

The complexity metric selected should have an interval scale.

 Depth of Inheritance Tree of a class (DIT). The DIT of a class is the maximum

length of the path from the root of the inheritance tree to the given class. A high

www.manaraa.com

 30

DIT value indicates a greater complexity but a greater likelihood that inherited

methods will be reused. A greater number of ancestors for a class make its

behavior prediction more difficult.

 Number of Children (NOC). The NOC is the number of subclasses directly

below a class in the inheritance tree. Moderate values for NOC point to the

possibility of reuse through inheritance. An NOC value which is very large

might indicate that the parent abstraction is inaccurate or misused. The number

of children of a class could be used to indicate its importance to the design.

 Coupling Between Classes (CBO), The CBO measures how much independence

a class possesses and hence how likely the class could be reused. A large CBO

value would indicate that maintenance might be more difficult due to sensitivity

to modifications in other areas and indicate that testing would be more critical.

 Response for a Class (RFC). The RFC indicates the number of methods that

can be executed when responding to a message to an object of the class. A large

RFC value points once again to an increased complexity of the class which

makes for more complicated debugging and testing.

 Lack of Cohesion in Methods (LCOM). The LCOM metric is calculated by

subtracting the count of the method pairs having similarities from the pairs of

methods having no similarities. The more similarities within pairs of class

methods would indicate a more cohesive class. A larger value would indicate a

possibility of errors occurring during development [Chidamber and Kemerer,

1994].

www.manaraa.com

 31

2.4.1.2 The QMOOD Quality Model

 Bansiya and Davis presented a hierarchical model for assessing the quality of

object-oriented design [Bansiya and Davis, 2002]. It consists of six quality factors

described in Table 2.1.

Table 2.1: QMOOD Quality Factor Definition [Bansiya and Davis 2002]

Quality
Factor

Definition

Reusability Reflects the presence of object oriented design characteristics that allow a design to be
reapplied to a new problem without significant effort.

Flexibility Characteristics that allow the incorporation of changes in a design. The ability of a
design to be adapted to provide functionality related capabilities.

Understand-
ability

The properties of a design that enable it to be easily learned and comprehended. This
directly relates to the complexity of design structure.

Functionality The responsibility assigned to the classes of a design, which are made available by
classes through their public interfaces.

Extendibility Refers to the presence and usage of properties in an existing design that allow for the
incorporation of new requirements in the design.

Effectiveness This refers to a design’s ability to achieve the desired functionality and behavior using
object oriented design concepts and techniques.

The six factors which are described in Table 2.1 are not able to be directly

measured. This required Bansiya and Davis to define design properties which could be

used to calculate these six quality factors but which could be measured directly. The

eleven design properties are presented in following Table 2.2.

www.manaraa.com

 32

Table 2.2: QMOOD Design Properties [Bansiya and Davis 2002]

Design
Property

Definition

Design Size
 (DSC)

A measure of number of classes used in the design.

Hierarchies
 (NOH)

Hierarchies are used to represent different generalization–specialization aspects of the
design. Classes in a design which have one or more descendants exhibit this property.

Abstraction
 (ANA)

A measure of generalization–specialization aspect of design. Classes in a design
which have one or more descendents exhibit this property of abstraction.

Encapsulation
 (DAM)

Defined as the enclosing of data and behavior within a single construct. In object
oriented designs the property specifically refers to designing classes that prevent
access to attribute declarations by defining them to be private, thus protecting the
internal representation of the objects.

Coupling
 (DCC)

Defines the interdependency of an object with other objects in a design. It is the
measure of the number of other objects that would be accessed by an object in order
for that object to function correctly.

Cohesion
 (CAM)

Accesses the relatedness of methods and attributes in a class. Strong overlap in
method parameters and attribute types is an indication of strong cohesion.

Composition
 (MOA)

Measures the “part-of,” “has,” “consists –of,” or “part-whole” relationships, which
are aggregation relationships in object oriented design.

Inheritance
 (MFA)

A measure of the “is-a” relationship between classes. This relationship is related to a
level of nesting of classes in an inheritance hierarchy.

Polymorphism
(NOP)

The ability to substitute objects whose interfaces match for one another at runtime. It
is a measure of services that are dynamically determined at run-time in an object.

Messaging
(CIS)

A count of the number of public methods that are available as services to other
classes. This is the measure of the services that a class provides.

Complexity
 (NOM)

A measure of the degree of difficulty in understanding and comprehending the
internal and external structure of classes and their relationships.

 Bansiya and Davis related the eleven design properties in Table 2.2 above to the

six quality factors in Table 2.1 using the following formulas in the following Table 2.3.

www.manaraa.com

 33

Table 2.3: QMOOD Quality Factors and Design
Properties Relationships [Bansiya and Davis 2002]

Quality
Factor

Relationship

Reusability -0.25 * Coupling +0.25 * Cohesion +0.5 * Messaging +0.5 * Design Size

Flexibility 0.25 * Encapsulation -0.25 * Coupling +0.5 * Composition
+0.5 * Polymorphism

Understandability -0.33 * Abstraction +0.33 * Encapsulation - .33 * Coupling +0.33 * Cohesion
-0.33 * Polymorphism –0.33 * Complexity –0.33 * Design Size

Functionality 0.12 * Cohesion +0.22 * Polymorphism +0.22 * Messaging
+ 0.22 * Design Size +0.22*Hierarchies

Extendibility 0.5 * Abstraction –0.5 * Coupling +0.5 * Inheritance +0.5 * Polymorphism

Effectiveness 0.2* Abstraction +0.2 * Encapsulation +0.2 * Composition +0.2 * Inheritance
+0.2 * Polymorphism

 The six quality factors were then used to find the Total Quality Index (TQI) by

taking the sum of reusability, flexibility, understandability, functionality, extendibility,

and effectiveness.

2.4.2 Stability Metrics

 Assessing the stability of software may be accomplished by considering

successive versions or iterations and determining the change in certain recognized

metrics, such as LOC and the C&K metrics. Bansiya proposed an “extent of change”

metric for analyzing structural stability. He outlined four steps in order to accomplish

the structural stability assessment:

 1. Identify the structural characteristics.

 2. Define or select metrics which assess each of the structural characteristics.

www.manaraa.com

 34

 3. Collect metrics data for the characteristics from several releases or versions.

 4. Analyze the changed characteristics and compute the extent-of-change metric.

The extent-of-change metric is computed by first normalizing the first metric’s value to

one and by dividing each other version’s metric value by the previous version’s metric

value. The normalized metrics are then added to form an “aggregate change.” The

extent of change is then computed by taking the difference of the aggregate change and

the first version’s aggregate change [Bansiya, 2000].

 The determination of what metric to use (product-related or process-related) has

been the subject of several studies. Elish and Rine studied thirteen successive releases

of the Apache Ant application. They made use of a suite of stability metrics stating that

stability of object-oriented designs is two-dimensional, pointing to the dimensions of

size and time. The size-based metrics were organized into class-based metrics which

measured the number of stable, added, deleted, and modified classes and relationship-

based metrics which examine the change or stability within four different relationships.

The generalization relationship deals with the relationship between a superclass and its

subclass. The relationship which occurs when one class is a part of another is called an

aggregation relationship. The dependency relationship between two classes is seen

when one class uses the other as a parameter type or a return type of a method. The

final relationship is called the association relationship, which is created when one class

uses a method from another class. For each of the four relationships, Elish and Rine

propose counting the number of added relationships, the number of deleted relationships

and the number of relationships which were stable. They have a straightforward

naming convention where N represents Number, S represents Stable, A represents

www.manaraa.com

 35

Added, D represents Deleted, and the relationships are named GR, AR, DR, and SR. So

the acronym NAGR represents the number of added generalization relationships. The

time-based metrics are used to measure the length of time that a design structure

remains stable. The units of days or months are normally used [Elish and Rine, 2005].

2.4.2.1 SDI Metric

 The System Design Instability Metric (SDI) was proposed by Li et al. in 2000 as

a measure of object-oriented software’s evolution by measuring the percentages of

classes which are affected by change from one iteration to the next. [Li et al., 2000].

The SDI metric makes use of the sum of three values to analyze the system-level design

changes from one iteration to the next: the percentage of classes whose names change

from one iteration to the next, the percentage of classes which were added, and the

percentage of classes which were deleted. The use of the C&K DIT (Depth of

Inheritance Tree) along with the number of separate hierarchies was recommended for a

large design analysis as well.

 Li et al. studied the effectiveness of the SDI metric for indicating the progress of

a project and demonstrated that the SDI metric measures different aspects of the

development of a project than do the C & K metrics [Li et al., 2000]. They suggested

further study on different environments to verify their results.

Since the SDI metric is calculated on information available at design time, it can

be considered a design metric.

www.manaraa.com

 36

2.4.2.2 SDIe Metric

 The SDIe metric was proposed by Olague et al. as a revision of the SDI metric,

making use of the concept of entropy which was added due to the fact that the dynamic

feature of agile development could obscure stability analysis [Olague et al., 2006]. The

SDIe metric is simpler to calculate than SDI due to the fact that it can be automated

whereas the SDI metric requires manual investigation for the count of name changes

[Roden et al., 2007]. The original SDI metric also has a hypersensitivity to large single

category changes which can be dampened by the use of entropy. The SDIe metric is

calculated by considering the sum of four values: the number of classes which have

been newly created, deleted, changed, and unchanged from the previous iteration

[Olague et al., 2006].

 Olague et al. performed a theoretical validation of the new metric using the

Kitchenham et al. criteria and the Zuse requirements for software measures. Two case

studies were utilized to compare the results of the SDI metric with the new SDIe metric.

The SDIe metric was further studied by a comparison to the Chidamber and Kemerer

metrics using the pairwise Spearman rank correlation [Olague et al., 2006].

Since the SDIe metric is calculated on information that is not normally available

at design time; that is, the number of classes that have been changed, it is not typically

considered a design metric

2.5 Expert Judgment

 Expert judgment is collected from individuals recognized as experts due to their

knowledge and experience in the field of interest. The use of expert opinion or

www.manaraa.com

 37

judgment has been studied from several different perspectives by a diverse set of

disciplines which include the cognitive sciences, medicine, meteorology, agriculture,

physics, computer science, and engineering [Shanteau, 1992]. Studies have also been

conducted which are concerned with the method of eliciting the expert opinion, how to

interpret and analyze the expert judgment, and how to improve the use of expert

judgment [Keeney and Winterfeldt, 1989; Sandri et al., 1995; Mumpower and Stewart,

1996; Genest and Wagner, 1987].

 Expert opinion may be gathered either qualitatively or quantitatively.

Quantitative representation of opinion requires the experts to express their judgments as

a numerical value which lends itself to an ease of analysis. Experts, however, may

prefer to use qualitative opinions expressed as words. There seems to be a “comfortable

vagueness of words” which can allow the experts to express their own vagueness about

a subject. Numeric values on the other hand seem to force experts to be more precise

and demand more consideration in reaching the opinion [Keeney and Winterfeldt,

1989].

 Shanteau identified five factors which influence the competence of experts:

domain knowledge, psychological traits, cognitive skills, decision strategies, and task

characteristics. It was his viewpoint that the performance of the expert was most

dependent on the task characteristics. He stated that tasks which involve problem

decomposition, static stimuli, more predictability, repetitive tasks, and feedback

availability resulted in a higher competence of experts [Shanteau, 1992].

 The process of utilizing expert opinion in research generally follows the

following steps:

www.manaraa.com

 38

1. The Problem under study is defined.
2. The Experts are selected.
3. The Experts are trained.
4. The Opinions of the Experts are elicited.
5. The Opinions are aggregated.
6. The Decision is made based on the aggregated opinion [Li and Smidts 2003].

Questions regarding the number of experts to select, the method of eliciting the opinion,

and the method for aggregating the opinions are sometimes difficult to answer. Several

different uses of expert judgment can be found in the literature [Dyba, 2005; Li and

Smidts, 2003; Kitchenham et al., 1997; Bansiya and Davis, 2002; Etzkorn et al., 2004;

Etzkorn et al., 2001; Bansiya et al., 1999]. These examples demonstrate a wide ranging

area for applications of expert judgment.

2.6 Academic Course Utilization in Software Research

The use of academic courses to gather data can be seen within a number of

documented studies. Laurie Williams has written several articles illustrating the study

of pair programming within university courses of different levels [Williams and

Kessler, 2000; Williams and Kessler, May 2000; Williams and Kessler., December

2000; Williams and Upchurch, February 2001]. Matthias Müller conducted an

experiment which compared pair programming with peer review [Müller, 2005].

Ciolkowski pointed out in his study that although the academic setting may not be truly

representative of the industrial setting, the data collected can be useful to help improve

current industrial software engineering processes. He stated that there were several

benefits. For example, the study can be more cost effective than attempting to study in

the industrial setting. Because the students within the graduate level class at the

University of Kaiserslautern where the data was collected were exposed to the next

www.manaraa.com

 39

approach or technique being studied, he felt they benefited from the study as well and

stated that he plans to continue utilizing the students for data collection [Ciolkowski

et al., 2004]. Höst et al. reported that the difference between computer science

professionals and students is relatively small [Höst et al., 2000]. Many students are

working in professional positions as well [Sjøberg et al., 2002].

Jeffrey Carver studied several examples of empirical studies conducted within

three countries with the goal of validating a research hypothesis which have used

students as subjects and listed several benefits to the students. These included the

exposure to state-of-the-art topics, industrial problems, hands-on practice,

demonstration that there is a need for evidence using quantitative methods to base

improvement in some software process and that they should be prepared to be subjected

to assessment throughout their career. He also highlighted the benefits to the

researchers making use of student subjects. These include obtaining preliminary

evidence to support or disprove a hypothesis, being able to control factors surrounding

the study, demonstrating to industry the need to continue the study, and preparing the

details of a study before carrying it out in an industrial setting. In addition, Carver

pointed out that there are benefits to the instructors of the courses in which the research

is being conducted. It could serve to stimulate them into a new manner of teaching,

encourage them to incorporate new problems in their courses, stimulate teamwork,

enhance the channels of communication between the students and the instructor, aid in

maintaining the students’ attention, and encourage the development of a critical attitude.

In addition to the benefits, Carver also listed some possible costs which might arise

when using students as subjects. In his opinion, the benefits clearly outweighed the

www.manaraa.com

 40

costs. He concluded with advice for researchers using students to gather data. Making

sure the study is clearly integrated with the goals of the course, setting realistic time

estimates, motivating the student subjects about the study, and allowing students to give

and receive feedback were listed as recommendations for a successful result [Carver

et al., 2000; Carter et al., 2006].

Several other studies have also utilized the students in an academic course.

Basili, when validating object-oriented design metrics related to software quality, used

students in an upper level undergraduate/graduate level course at the University of

Maryland [Basili et al., 1996]. Berander reported on the use of fourth year Software

Engineering Master’s students when studying the process of requirements prioritization

[Berander, 2004]. James Noble reported on an experiment to incorporate more agile,

iterative approaches within a capstone software project course [Noble et al., 2004].

www.manaraa.com

 41

CHAPTER 3

RESEARCH DESCRIPTION

For this research, we performed the following studies:

Study 1. an examination of stability across agile software iterations.

a. One experiment compared existing stability metrics (SDI and

SDIe) to each other and compared SDIe to the C&K metrics.

b. Another experiment compared the stability metrics (SDI and

SDIe) to the Bansiya TQI.

c. In another experiment, we attempted to develop fault prediction

models across the agile iterations using the C&K metrics suite.

Study 2. an examination of the relationships between refactoring, faults,

and reusability across agile software iterations.

Study 3. a comparison of the reusability of software developed using an

agile method to software developed using a plan-based method.

a. One experiment examined paired data, that is, the applications

that were agilely-developed and the same applications that were

developed using a plan-based method were rated for reusability

by the same experts.

www.manaraa.com

 42

b. One experiment examined unpaired data, that is, the experts who

analyzed the agilely-developed software were not the same

experts that analyzed the software developed using a plan-based

method.

Studies 1 and 2 were performed on agilely-developed software only, whereas

Study 3 compared agilely-developed packages to non-agilely-developed packages.

The software packages examined in this study were collected in senior level

software engineering courses taught by two different professors, one at the University

of Alabama in Huntsville and the other at the University of North Alabama. A

complete description of these packages and how this data was collected is given in

Section 3.1 below. Various tools were employed to collect the stability metrics, the

C&K metrics, and the Bansiya metrics. These tools are described in Section 3.2 below.

The reusability studies required human evaluators to rate classes and packages for

reusability. This is described in Section 3.3 below. Detailed descriptions of the steps

performed for each study are given in Sections 3.4, 3.5, and 3.6 below.

In this research, we examined 24 packages, and the reusability analysis involved

118 evaluators. We have not encountered any empirical studies of this magnitude in

any of our research. The number of projects considered, the number of expert

evaluators, the use of more than one university course, more than one professor, more

than one semester and the use of both traditional plan-based development and agile

development on the same applications all contribute to the uniqueness of this work.

www.manaraa.com

 43

3.1 Software Packages Examined in Empirical Studies

The data used within this study began with three different applications assigned

as semester assignments in senior level software engineering courses using either a

traditional plan-based method or an agile method. These projects were assigned at two

different universities, the University of Alabama in Huntsville and the University of

North Alabama, by two different professors across multiple semesters. Software teams

at each institution received the same problem assignments with the same allocation of

time for the assignment. Each agile project was assigned to a programming team

consisting of four members and given the same amount of time (eight weeks) and

number of iterations to complete. All of the projects were implemented in the

programming language C++. There were five traditionally designed or plan-based

projects and five agilely developed projects. Table 3.1 lists the class numbers for each

of the traditionally developed projects.

Table 3.1: Traditional (Plan-based) Project Information

Project

Number
of
Classes

P1 4
P2 13
P3 7
P4 3
P5 5

Each of the agile projects was delivered in four iterations with the exception of

one team which only delivered three iterations. Each iteration was two weeks in

www.manaraa.com

 44

duration. The agile project teams also reported fault, refactoring and effort data.

Table 3.2 lists the class numbers for each of the five agile projects labeled A thru E.

Table 3.2: Agile Project Information

Project

Number
of
Classes

A1 5
A2 5
A3 6
A4 9
B1 12
B2 19
B3 20
B4 22
C1 1
C2 6
C3 6
C4 7
D1 4
D2 4
D3 8
D4 8
E1 7
E2 18
E3 19

3.1.1 Software Applications Implemented

One application (M) was a database management application for an organization

employing providers of services and having members paying membership fees in order

to receive services from the providers. The providers were allowed to enter services

after validating members. The program supported the editing, addition, suspension, and

deletion of members and editing provider information in the database. It also created an

www.manaraa.com

 45

electronic fund transfer file and produced weekly reports which were generated

automatically at midnight on Friday evening. (This application was implemented for

agile Projects A and E and traditional projects P3 and P4.) Another application (V)

supported a company maintaining several stores in several regions. A hierarchy of

users existed consisting of three levels: store managers, regional managers, and a vice-

president. Each successive level had the privileges of the levels beneath it. Monthly

target sales, actual sales and whether objectives were met were reported. (This

application was implemented for agile Projects B and C and traditional project P5

discussed in later chapters.)

Another application (S) was to implement a scheduler for a computer science

department. It utilized a classroom database and a list of valid class times. The input

was a list of course requests which gave priority scheduling to graduate courses and it

produced a schedule for the semester including a list of course conflicts. (This

application was implemented for agile Project D and traditional projects P1 and P2

discussed in later chapters.)

Table 3.3 demonstrates the relationships of the projects.

Table 3.3: Project Relationships

Application Agile Projects Traditional Projects

M A1-A4
E1-E3

P3
P4

V B1-B4
C1-C4

P5

S D1-D4 P1
P2

www.manaraa.com

 46

3.2 Tools Used in Empirical Studies

After they were completed, the projects were analyzed using tools to collect

metrics and compare the iterations. We collected the C&K metrics data using IPL’s

Cantata++ 4.1 analysis tool [Cantata, 2004]. Both system level and class level metrics

were collected with the results stored in Excel spreadsheets. We gathered the data

regarding the change in the class-level metrics from one iteration to another as they

were represented in spreadsheets using the differencing tool Synkronizer® 9.1 XL,

which compared two spreadsheets and highlighted changes [Synchronizer, 2006]. We

also used the Comparison tool Compare It 3.5 in order to determine code changes

[Compare It]. Data was stored in Excel spreadsheets.

3.3 Reusability Data Collection Using Human Evaluators

The projects were organized into groups of two or more in two different

manners. First, they were grouped primarily by size in order to not overly burden any

one evaluator. A second set of groupings was organized in order to have a pair of two

projects, one traditionally created and one created using an agile method for the same

application to be considered by the same evaluator.

In the first grouping, which we call the “unpaired” grouping, we specifically did

not want evaluators of an agile project to be the same evaluators for the non-agile

version of the project. The purpose here was to minimize any bias that resulted from

the evaluator having already seen another version of the same project. In the second

grouping, which we call the “paired” grouping, we gave the agile and non-agile

www.manaraa.com

 47

versions of the same project to the same evaluators. The purpose here was to minimize

variance resulting from different evaluators with different opinions.

These were presented to evaluators, and the evaluators were asked to fill in a

questionnaire related to each class (See Appendix A), a questionnaire for the entire

project or package (See Appendix B) and a demographic questionnaire (See

Appendix C) which might provide needed data for further studies. The evaluators were

presented with the projects, directions, copies of the questionnaires, informed consent

statement, and spreadsheet with code numbers for the projects and classes within the

projects on CD-ROM, along with hard copies of the directions, questionnaires,

informed consent statement, and spreadsheet of code numbers and a self addressed

envelope for the return of the signed informed consent form. We also encouraged the

evaluators to contact us with any questions they might have. The evaluators were

assured of their anonymity. Also, the evaluators were not told which methodology was

used in the construction of each project which was recognized by only a project

number. Any identifying documentation within the projects was removed, thus the

programmers also were anonymous. The evaluators were also asked to provide

personal demographic information through another website which was associated with a

unique evaluator code. This allowed for the association of all questionnaire responses

from one evaluator to be considered as a group while the evaluator remains anonymous.

Our questionnaire that we used in our research has been used in previous

research by Etzkorn [Etzkorn, 1997]. Although it was previously used in paper form,

we felt that the implementation of the questionnaire as a web-based instrument which

collected the responses in a comma separated file would be more user friendly. The

www.manaraa.com

 48

unpaired data was collected in this manner. We feel that this made it more user-friendly

to both the evaluators and the researcher and encouraged more experts to participate.

However, when we administered the questionnaire to the second group of evaluators

using the paired plan-based and agile for the same application, we were unable to use

the web-based instrument and were forced to have the results delivered in excel files.

The consolidation of these files made us appreciate the web-based instrument.

3.3.1 Internal Consistency Reliability of the Questionnaire

 Internal consistency reliability is a trait to be considered with regard to an

evaluation instrument (questionnaire) involving human responses on a number of items.

Cronbach’s alpha is one of the most commonly used values to estimate such a trait.

Reliability of an instrument may be defined to be “the extent to which [measurements]

are repeatable and that any random influence which tends to make measurements

different from occasion to occasion is a source of measurement error” [Nunnally, 1976].

Cronbach’s alpha is a coefficient found as the mean of all split-half reliabilities

[Cortina, 1993]. It is a value less than or equal to one and an alpha value of 0.70 or

greater is generally desired in order to view an evaluation instrument as reliable.

Part of our questionnaire analyzed the software packages themselves (rather than

individual classes), and addressed the areas of hierarchy, size, reusability, flexibility,

understandability, functionality, extendibility, and effectiveness, culminating in a final

evaluation of total quality. The Cronbach’s alpha value was computed for three sets of

per-package data: paired, unpaired and the paired and unpaired combined. Table 3.3

below demonstrates our findings. Each of the categories resulted in an alpha value over

www.manaraa.com

 49

0.70, which indicates the per-package questionnaire is acceptable. We found it

surprising that the alpha value for the paired data in which each evaluator was given a

traditional plan-based project and an agilely developed project for the same application

was lower than when the evaluators did not receive the same type of application to

evaluate.

Table 3.4: Cronbach’s Alpha for Package Data

Evaluation Type Cronbach’s Alpha

Paired Data 0.740

Unpaired Data 0.883

Combined Data 0.846

 Part of our questionnaire analyzed individual classes, and addressed the topics of

cohesion, coupling, modularity, interface, documentation, size, complexity, simplicity,

encapsulation, composition, inheritance, abstraction, polymorphism culminating in a

final evaluation of reusability. The Cronbach’s alpha value for the three sets of per-

class data―paired, unpaired, and the paired and unpaired combined—are given in

Table 3.4. Once again, all of the alpha values are greater than 0.70 from which we can

conclude reliability of the per-class questionnaire is acceptable.

www.manaraa.com

 50

Table 3.5: Cronbach’s Alpha for Class Data

Evaluation Type Cronbach’s Alpha

Paired Data 0.820

Unpaired Data 0.816

Combined Data 0.812

3.3.2 Description of Expert Evaluators

Experts were solicited from a pool of colleagues and industry personnel working

in computer science, as well as graduate and undergraduate students at the University of

Alabama in Huntsville and undergraduate students at the University of North Alabama.

They were sent a request for their participation and upon receiving an affirmative reply,

they were then mailed a packet containing the CD-ROM, printed material listed earlier,

and the self addressed envelope. They were given a one month period in which to

complete their evaluation. We expected that the evaluators would take from eight to

ten hours of effort in order to complete the task. Our goal was to have at least seven

evaluations for each project. We were able to reach or exceed that goal for each one of

the projects. Each project was evaluated by at least seven different evaluators and some

had as many as fourteen evaluations.

One hundred and eighteen evaluators were used overall. Most of the evaluators

(seventy nine) volunteered for the work, but some evaluators (thirty nine) were required

to do the work for a course grade. The average number of years of experience of the

evaluators in object-oriented programming was 6.2 years. This value was collected from

www.manaraa.com

 51

the demographics questionnaire. Evaluators did not distinguish between student

experience and industry experience. The overall demographic data of the evaluators is

given in Appendix D.

The evaluators were offered the opportunity to receive the results of the research

when it is completed. Although the evaluators were asked to make a commitment of

time in order to perform the analysis of the projects, it is our belief that the evaluators in

turn benefited from the study. They received a review of terminology and also a

discussion of what needs to be considered when evaluating software for attributes such

as cohesion, coupling and complexity.

This proposed evaluation methodology was approved by the Human Subjects

Committee of the University of North Alabama and the IRB Human Subjects

Committee of the University of Alabama in Huntsville. See Appendix E.

3.3.3 Threats to Validity

We performed our study by considering twenty five projects implemented to

solve three different applications. The programmers of the agile projects gathered

defect data during software development. With the student projects, we minimized the

effects of confounding factors to avoid bias by comparing student projects developed at

different universities and conducted by different professors, comparing student projects

developed during different semesters, and comparing student projects developed for the

same application using the two different development processes. According to Wohlin

et al., case studies are useful when performing comparative studies [Wohlin et al.,

2000].

www.manaraa.com

 52

We minimized bias by selecting the evaluators in different ways. In the

“unpaired” grouping, we specifically did not want evaluators of an agile project to be

the same evaluators for the non-agile version of the project. The purpose here was to

minimize any bias that resulted from the evaluator having already seen another version

of the same project. In the “paired” grouping, we gave the agile and non-agile versions

of the same project to the same evaluators. The purpose here was to minimize variance

resulting from different evaluators with different opinions.

 We considered the four types of threats to validity as presented by Cook and

Campbell: external, internal, construct, and conclusion [Cook and Campbell, 1979;

Wohlin et al., 2000]. External validity represents the ability to generalize results from

our research to industrial practice. We planned to reduce the threat to external validity

by making use of different levels and types of expert evaluators. We used senior level

computer science students, graduate computer science students, computer science

instructors, and industry professionals. We also used student projects developed during

different semesters to prevent discussion of one paradigm influencing teams using a

different paradigm. Internal validity represents the ability to conclude a causal

relationship between the treatment and the effect. We attempted to reduce the threat to

internal validity by using both volunteers who received no compensation and students in

classes who were assigned the evaluation as an assignment. We also gave the

evaluators a reasonable timeframe in which to complete the evaluation. By making sure

that no evaluator was aware of the type of development process used to develop the

project, we attempted to insure construct validity. Finally, we made use of a large

number of projects, classes and evaluators in order to insure conclusion validity also

www.manaraa.com

 53

called statistical conclusion validity. This has to do with the ability to draw the correct

conclusion from the study [Wohlin et al., 2000].

3.3.4 Interrater Reliability

 Before considering aggregating the responses of the expert opinions given to the

questionnaires, a confirmation that there was some type of agreement among the

evaluators was necessary. This was necessary in order for us to consider the mean of

the evaluations as being representative of the individual evaluators’ values [Cohen

et al., 2001]. A result of high interrater agreement would serve to indicate the reliability

of the experts’ subjective evaluations. James et al. presented the rWG(J) value as a

within-group interrater reliability measure for judges scores where J represents the

number of parallel items [James et al., 1984]. This value compares the observed within-

group variances to an expected variance which would occur with random responses.

Cohen et al. stated that the use of rWG(J) has two main advantages. First, because it does

not depend on the between-group variances, it would be useful for data where the group

mean has restricted range. Secondly, its use provides a measure for each group instead

of just one measure for the entire population [Cohen et al., 2001].

 The rWG(J) value was calculated for each package and each class within the

package. When we considered the data, we determined that approximately ninety-two

percent of the class rWG(J) values were in the acceptable range and a majority of the

package values were as well. A rule of thumb that a value of .7 is “good” for interrater

reliability is sometimes given while others point to .5 or greater as acceptable.

acceptable [Cohen et al., 2001]. Since overall the per class rWG(J) values were in

www.manaraa.com

 54

acceptable ranges, this meant that we were able to calculate the mean of the expert

ratings for each class, and use this mean in statistical and graphical comparisons.

 The rWG(J) values for the packages and classes are given in Appendices F and G

due to their large size.

3.4 Detailed Description of Study 1

 In the first part of Study 1, we first calculated the SDI, SDIe, and C&K metrics.

Then we compared the graphs of SDI and SDIe, across the iterations of each software

package. We then performed a pairwise Spearman’s rank correlation of SDIe to the

C&K metrics collected across the iterations. We used Spearman’s rather than Pearson’s

correlation here because the data was not normally distributed, according to the

Kolmogorov-Smirnoff test. A complete description of this part of Study 1 is given in

Chapter 4 below. It should be noted that stability may be considered using structural

(logical) or behavorial (performance) changes. In our discussion of stability, we will

consider structural changes.

Next, in the second part of Study 1, we compared the graphs of the SDI and

SDIe metrics to the Bansiya Total Quality Index (TQI). A complete description of this

part of Study 1 is given in Chapter 4 below.

Lastly, in the third part of Study 1, we attempted to develop regression models

that would predict faults across the agile iterations using the C&K metrics suite. We

first performed a collinearity analysis of the C&K metric values. We examined the

Variance Inflation Factor (VIF) and the Condition Number. The variance inflation

factor (VIF) is the reciprocal of the tolerance which indicates the variance percentage

www.manaraa.com

 55

unaccounted for by other independent variables within the regression equation [Olague

et al., 2007]. The VIF value may be used as a threshold for determining whether

multicollinearity exists [Mansfield and Helms, 1982]. The condition number, the ratio

of the square root of the largest eigenvalue to all the others is also an indicator that

multicollinearity may be a problem [Olague et al., 2007]. A rule of thumb used for

linear regression is a threshold of 10 for VIF which when exceeded calls for further

study. Using the VIF and condition number as a rationale for choosing various subsets

of the C&K metrics, we then attempted to develop linear regression models using these

various subsets of the C&K metrics as the independent values and the fault values as the

dependent values. A complete description of this part of Study 1 is given in Chapter 5.

below.

3.5 Detailed Description of Study 2

In Study 2, we examined the relationships between refactoring, faults, and

reusability across agile software iterations. We first graphed each of these values across

the iterations. Because trends in the data were difficult to see from these graphs, we

normalized the data by subtracting the mean and dividing by the standard deviation for

each of the three values. Finally, we performed a Spearman’s correlation of faults vs.

refactoring, of faults vs. reusability ratings, and of refactoring vs. reusability ratings.

We used Spearman’s rather than Pearson’s correlation here because the data was not

normally distributed, according to the Kolmogorov-Smirnoff test. A complete

description of Study 2 is given in Chapter 6 below.

www.manaraa.com

 56

3.6 Detailed Description of Study 3

In Study 3, we compared the reusability of software developed using an agile

method to software developed using a plan-based method. This consisted of two

separate experiments, a paired experiment and an unpaired experiment. These

experiments were performed on a per-class level. That is, the reusability of the classes

was examined, not the (separately rated) reusability of the packages.

The paired experiment consisted of five agilely developed projects and five

traditionally developed projects consisting of a total of fifty six classes. The unpaired

experiment consisted of five traditionally developed projects and five agilely developed

projects as well with a total of ninety five classes.

In the “unpaired” grouping, we specifically did not want evaluators of an agile

project to be the same evaluators for the non-agile version of the project. The purpose

here was to minimize any bias that resulted from the evaluator having already seen

another version of the same project. In the “paired” grouping, we gave the agile and

non-agile versions of the same project to the same evaluators. The purpose here was to

minimize variance resulting from different evaluators with different opinions.

 For each experiment, the hypothesis to be tested was as follows:

 H0: There is no significant difference in the reusability of the software

developed using highly iterative methods from those developed using

traditional plan-based methods.

www.manaraa.com

 57

 H1: There is a significant difference in the reusability of the software

developed using highly iterative methods from that developed using

traditional plan-based methods.

For each class in the unpaired experiment, there were seven expert ratings of

reusability. We were able to compute the average of reusability for each class over

these seven experts since the rWG(J) interrater reliability values were acceptable per class.

 Each class can be considered to be independent of each other class in the

software. All the software was developed using the object-oriented paradigm which

specifies that encapsulation, or information hiding, is the primary objective when

defining each class [Snyder, 1986]. Encapsulation means that interdependencies

between classes are kept to an absolute minimum. Thus, the reusability ratings of each

class can be considered independent. Since the classes are independent, it was

legitimate to compare the mean over the reusability ratings of the agilely-developed

classes to the mean over the classes developed using a plan-based method using a t-test:

the statistical assumptions behind the t-test were met.

 A complete description of Study 3 is given in Chapter 7 below.

www.manaraa.com

 58

CHAPTER 4

STABILITY

 The stability of software indicates to software professionals whether the

software is mature enough for delivery to a customer. Stability metrics attempt to

quantify the current software stability level and can be examined to see if software is

approaching stability as the development deadlines near.

4.1 Validation of the SDIe Metric

The purpose of one area of our research is the further validation of two existing

stability metrics: the SDI metric proposed by Li et al. [Li et al., 2000] and the SDIe

metric proposed by Olague et al. [Olague et al., 2006] as a modification to the earlier

SDI metric. The research on stability was accomplished by means of examining four

iterations for each of four student projects. These projects were assigned to follow the

extreme programming paradigm as closely as possible. Teams programmed in pairs,

used story cards, used a simple design, performed planned testing, refactored,

performed continuous integration, had small releases, and the instructor for the course

served as the on-site customer with availability daily through office hours and by email.

www.manaraa.com

 59

The data required to calculate the stability metrics is shown in Table 4.1 in the

following format:

 Summary table containing for each iteration:

o a = number of classes with class name change

o b = number of newly added classes

o c = number of deleted classes

o m = total number of classes in the previous iteration.

o The SDI values for each iteration with SDI = (a + b + c) / m * 100

o C1 = number of classes added.

o C2 = number of classes deleted.

o C3 = number of classes with metric changes.

o C4 = number of classes unchanged.

o N = total number of classes in this iteration.

o The SDIe values for each of the four iterations, calculated using

 SDIe = -((C1/N) log2(C1/N) + (C2/N) log2(C2/N) + (C3/N) log2(C3/N) +

(C4/N) log2(C4/N))

 A manual inspection of the source code for each of the packages was used in

order to determine whether there were any classes whose names were changed. The

inspection of the code to determine whether classes were changed was performed using

the class level metrics calculated with the Cantata ++4.1 metrics tool and the

Synkronizer® XL comparison tool which compares Excel spreadsheets. We performed a

Spearman’s rank correlation analysis between the SDIe metric and the sum of all the

classes in the project for each of the six C&K metrics using the SPSS® 13.0 statistical

www.manaraa.com

 60

analytic tool. The correlation between the SDIe metric and the average of each of the

C&K metrics was also computed. Spearman’s rank correlation may be used to

represent the strength of the relationship between two variables resulting in values

ranging from -1 to 1. A value near one indicates a strong positive relationship, a value

near zero indicates a weak relationship and a value near -1 represents a strong negative

correlation. The variables being studied are not required to be normally distributed

[Sheskin 2004].

Table 4.1: Stability Data, SDI, and SDIe

V
er

si
on

a:
 N

am
e

ch
an

ge
d

b:
 A

dd
ed

c:
 D

el
et

ed

m
: T

ot
al

 c
la

ss
es

SD
I

C
1:

C
la

ss
es

 A
dd

ed

C
2:

C
la

ss
es

 D
el

et
ed

C
3:C

la
ss

es
 C

ha
ng

ed

C
4:C

la
ss

es

U
nc

ha
ng

ed

N
: T

ot
al

 C
la

ss
es

SD
I e

A1 0 5 0 5 0 5 0 0 0 5 0
A2 0 0 0 5 0 0 0 4 1 5 0.722
A3 0 1 0 6 20 1 0 0 5 6 0.650
A4 0 3 0 9 50 3 0 5 1 9 1.352

B1 0 12 0 12 0 12 0 0 0 12 0
B2 0 8 1 19 75 8 1 11 0 19 1.219
B3 0 1 0 20 5 1 0 17 2 20 0.748
B4 1 3 1 22 25 4 2 18 1 22 1.242

C1 0 1 0 1 0 1 0 0 0 1 0
C2 0 5 0 6 500 5 0 1 0 6 0.650
C3 0 1 0 7 16.667 1 0 3 3 7 1.449
C4 0 0 0 7 0 0 0 5 2 7 0.863

D1 0 4 0 4 0 4 0 0 0 4 0
D2 0 4 4 4 200 4 4 0 0 4 1
D3 0 4 0 8 100 4 0 4 0 8 1
D4 0 0 0 8 0 0 0 4 4 8 1

www.manaraa.com

 61

 The comparison graphs for SDI and SDIe, and the pairwise Spearman’s rank

correlations between the C&K metrics and SDIe are shown in

 Project A: Figures 4.1, 4.2, Table 4.2

 Project B: Figures 4.3, 4.4, Table 4.3

 Project C: Figures 4.5, 4.6, Table 4.4

 Project D: Figures 4.7, 4.8, Table 4.5

Tables 4.2, 4.3, 4.4, and 4.5 contain analysis of both the sum and the average of the

C&K metrics across the classes of the project.

4.1.1 Project A Stability Analysis

0

10

20

30

40

50

60

1 2 3 4

 Project A Versions

SD
I V

al
ue

s

SDI

Figure 4.1: Project A SDI Results

www.manaraa.com

 62

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4

 Project A Versions

SD
Ie

 V
al

ue
s

SDIe

Figure 4.2: Project A SDIe Results

Table 4.2: Pairwise Spearman’s Rank Correlation between C&K metrics and the
SDIe metric for Project A

 LCOM DIT CBO NOC RFC WMC
Sum of C&K
Correlation .949 .775 .949 . .949 .949
ρ-value .051 .225 .051 . .051 .949

Significant at
α = 0.05? NO NO NO NO NO

Significant at
α = 0.10? YES NO YES YES NO

Avg. of C&K
Correlation .316 . .316 . .949 .316
ρ-value .684 . .684 . .051 .684

Significant at
α = 0.05? NO NO NO NO

Significant at
α = 0.10? NO NO YES NO

Project A implemented a database management application for an organization

employing providers of services and having members paying membership fees in order

to receive services from the providers. The providers were allowed to enter services

www.manaraa.com

 63

after validating members. The program supported the editing, addition, suspension, and

deletion of members and editing provider information in the database. It also created an

electronic fund transfer file and produced weekly reports which were generated

automatically at midnight on Friday evening.

 Entries within the pairwise Spearman’s rank correlation tables which are empty

indicate the value of the given system-level metric is extremely small, near zero. Zero

values for the NOC sum and average are a result of the lack of inheritance for a

majority of the classes. The discrepancy between the DIT and the NOC numbers may

be traced to the use of Microsoft Foundation Class library classes for which Cantata++

calculated a DIT value of one even though there were no children classes of locally

defined classes within the project. Project A’s results in Table 4.2 above are

inconclusive overall due to lack of significance. Although none of the correlations were

significant at α = 0.05, four of the correlations, Sum of LCOM, Sum of CBO, Sum of

RFC, and Average of RFC were significant at α = 0.10. In the Olague et al. paper, only

the Average of C&K LCOM was significant at either level α = 0.05 or α = 0.10 [Olague

et al., 2006]. None of the correlations was significant in the Li et al. study [Li et al.,

2000]. Due to lack of significance, it is not clear whether SDIe is measuring the same

thing as any of the C&K metrics or not (although the significance at α = 0.10 of some of

the results does lead one to wonder if there is some overlap of the SDIe metric with Sum

of LCOM, Sum of CBO, Sum of RFC, and Average of RFC) [Roden et al., November

2007].

 The fact that the changes from the first iteration to the second iteration were

only changes to existing classes is reflected in the different shapes of Figures 4.1 and

www.manaraa.com

 64

4.2 above. No new classes were added and none of the class names were changed.

Thus the SDI metric would have a value of zero but the SDIe metric would be a positive

value. Similarly, between the second and third iterations, there was only one class

added, causing the SDI metric to increase while the SDIe metric decreased. Due to the

fact that there were both added classes and changed classes from Iteration 3 to

Iteration 4, both metrics increased. It should be pointed out that for each of the graphs

generated for the SDI metric, the value for the first iteration will always be zero.

Similarly, the beginning value in the graph for the SDIe metric will always be zero

[Roden et al., November 2007].

4.1.2 Project B Stability Analysis

0

10

20

30

40

50

60

70

80

1 2 3 4

 Project B Iterations

SD
I V

al
ue

s

SDI

Figure 4.3: Project B SDI Results

www.manaraa.com

 65

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4

 Project B Iterations

SD
Ie

 V
al

ue
s

SDIe

Figure 4.4: Project B SDIe Results

Table 4.3: Pairwise Spearman’s Rank Correlation between C&K metrics and the
SDIe metric for Project B

 LCOM DIT CBO NOC RFC WMC
Sum of C&K
Correlation .200 .400 .400 . .800 .600
ρ-value .800 .600 .600 . .200 .400

Significant at
α = 0.05? NO NO NO NO NO

Significant at
α = 0.10? NO NO NO NO NO

Avg. of C&K
Correlation -.400 -.20 .400 . .400 .600
ρ-value .600 .800 .600 . .600 .400

Significant at
α = 0.05? NO NO NO NO NO

Significant at
α = 0.10? NO NO NO NO NO

Project B implemented an application which supported a company maintaining

several stores in several regions. A hierarchy of users existed consisting of three levels:

www.manaraa.com

 66

store managers, regional managers, and a vice-president. Each successive level had the

privileges of the levels beneath it. Monthly target sales, actual sales and whether

objectives were met were reported. The correlation outlined in Table 4.3 above again

demonstrates results similar to those generated by Olague et al., that is, that no

correlations were significant [Olague et al., 2006]. Thus, again the results are

inconclusive.

The different shapes of the graphs in Figures 4.3 and 4.4 can be attributed to the

fact that the differences in first three iterations were greatly influenced by changes in

already existing classes which greatly affected the calculated value of the SDIe metric

but were not used in the calculations for the SDI metric. This programming team

implemented the most classes in the first iteration and placed a greater emphasis on

refactoring in the later iterations [Roden et al., November 2007].

4.1.3 Project C Stability Analysis

0

100

200

300

400

500

600

1 2 3 4

 Project C Iterations

SD
I V

al
ue

s

SDI

Figure 4.5: Project C SDI Results

www.manaraa.com

 67

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4

 Project C Iterations

SD
Ie

 V
al

ue
s

SDIe

Figure 4.6: Project C SDIe Results

Table 4.4: Pairwise Spearman’s Rank Correlation between C&K metrics and the
SDIe metric for Project C

 LCOM DIT CBO NOC RFC WMC
Sum of C&K
Correlation .738 -258 .738 -.258 .800 .400
ρ-value .262 .742 .262 .742 .200 .600

Significant at
α= 0.05? NO NO NO NO NO NO

Significant at
α = 0.10? NO NO NO NO NO NO

Avg. of C&K
Correlation -.400 .258 .600 -.258 .000 -.400
ρ-value .600 .742 .400 .742 1.00 .600

Significant at
α = 0.05? NO NO NO NO NO NO

Significant at
α = 0.10? NO NO NO NO NO NO

Once again, the Spearman’s rank correlation results in Table 4.4 above

compare to the results from Olague et al. [Olague et al., 2006]. The shapes of the

www.manaraa.com

 68

graphs in Figures 4.5 and 4.6 once again can be attributed to the fact that the SDIe

metric calculation is affected by changes to existing classes while the SDI metric does

not make use of the measurement of number of classes changed.

 Projects B and C, which had the same requirements, analyzed above were

assigned as student software engineering projects at the two different institutions by two

different professors. The teams were given the same problem description and the same

amount of time to complete the project. It should be noted that the graphs of the SDI

metric for Projects B and C have differing shapes. Likewise, the graphs for the SDIe

metrics differ as well. Further investigation of the development process revealed two

major factors which could account for these differences. First, the two teams chose to

implement different story cards at different iterations. Second, the number, size, and

complexity of the classes in the two projects were vastly different. One team chose to

distribute their new class development later into the iteration process while the other

team chose to instead perform more refactoring in the last iteration [Roden et al.,

November 2007].

www.manaraa.com

 69

4.1.4 Project D Stability Analysis

0

50

100

150

200

250

1 2 3 4

 Project D Iterations

SD
I V

al
ue

s

SDI

Figure 4.7: Project D SDI results

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4

 Project D Iterations

SD
Ie

 V
al

ue
s

SDIe

Figure 4.8: Project D SDIe Results

www.manaraa.com

 70

Table 4.5: Pairwise Spearman’s Rank Correlation between C&K metrics and the
SDIe metric for Project D

 LCOM DIT CBO NOC RFC WMC
Sum of C&K
Correlation .943 .577 .943 .577 .943 .943
ρ-value .057 .423 .057 .423 .057 .057

Significant at
α= 0.05? NO NO NO NO NO NO

Significant at
α = 0.10? YES NO YES NO YES YES

Avg. of C&K
Correlation .000 .000 .943 .000 .000 .000
ρ-value 1.00 1.00 .057 1.00 1.00 1.00

Significant at
α = 0.05? NO NO NO NO NO NO

Significant at
α = 0.10? NO NO YES NO NO NO

 The purpose of Project D was to implement a scheduler for a computer science

department. It utilized a classroom database and a list of valid class times. The input

was a list of course requests which gave priority scheduling to graduate courses and it

produced a schedule for the semester including a list of course conflicts.

This team apparently had some misunderstandings with regard to the feature of

extreme programming which delivers small iterations with increasing and/or improved

functionality. This team removed the entire functionality of the first iteration from the

project’s first iteration and introduced new functionality in the second iteration. For the

third iteration the original functionality was reintroduced and refined for the fourth

iteration. Due to this misunderstanding, the SDIe metric computes two consecutive zero

values for the first two iterations because the same number of classes was added as was

deleted in the second iteration. The change in the SDIe metric reflects that the

www.manaraa.com

 71

functionality was restored between the second and third iterations. In the same manner

the SDI metric demonstrates the largest change between the second and third iterations.

 The results in Table 4.5 above for Project D are inconclusive overall due to lack

of significance: none of the correlations were significant at α = 0.05, although four of

the correlations, Sum of LCOM, Sum of CBO, Sum of RFC, and Average of CBO were

significant at α = 0.10. Due to lack of significance, it is not clear whether SDIe is

measuring the same thing as any of the C&K metrics or not (although the significance

at α = 0.10 of some of the results does lead one to wonder if there is some overlap with

Sum of LCOM, Sum of CBO, Sum of RFC, and Average of CBO). It is interesting that

three out of the four metrics were significant in Table 4.2, project A as well: Sum of

LCOM, Sum of CBO, and Sum of RFC. However, in Project A it was Average of RFC

instead of Average of CBO that was significant. Again, this leads one to wonder if there

is some overlap of the SDIe metric with Sum of LCOM, Sum of CBO, Sum of RFC, and

possibly either Average of RFC or Average of CBO. More study on larger data sets is

required [Roden et al., November 2007].

4.2 Comparison of Stability and TQI

 The second area of our stability research is concerned with determining if there

is a relationship between the Total Quality Index of Bansiya and Davis and the stability

metrics SDI and SDIe [Bansiya and Davis, 2002; Li et al., 2000; Olague et al., 2006].

This study arose from a serendipitous event in which two researchers using the same

data for two separate research projects had each prepared a graph and shared the results

in a meeting. One was studying the total quality index while the other was separately

www.manaraa.com

 72

studying the stability metrics. It was an accidental comparison which caused this

researcher to realize there could possibly be a close relationship between these two

concepts.

 This study used five undergraduate software engineering projects implemented

using the extreme programming paradigm. Four of the projects contained four

iterations each. These were the same four projects discussed in Section 4.1. An

additional project, Project E had only three iterations due to a failure at delivery of one

of the iterations. The following Table 4.6 indicates the computed values for the SDI

and SDIe metrics, the values of the six QMOOD quality values, the Total Quality Index

TQI, and the normalized values of SDI, SDIe, and TQI. The values of SDI, SDIe, and

TQI were normalized by subtracting the respective mean and then dividing by the

standard deviation through the aid of the Minitab tool. This was accomplished to

facilitate simultaneous graphing of the concepts on one graph.

www.manaraa.com

 73

Table 4.6: Stability and Quality Values

Pa
ck

ag
e

SD
I

SD
Ie

R
eu

sa
bi

lit
y

Fl
ex

ib
ili

ty

U
nd

er
st

an
da

bi
lit

y

Fu
nc

tio
na

lit
y

Ex
te

nd
ib

ili
ty

Ef
fe

ct
iv

en
es

s

TQ
I

 N
or

m
al

iz
ed

 S
D

I

 N
or

m
al

iz
ed

 S
D

Ie

 N
or

m
al

iz
ed

 T
Q

I

A1 0.000 0.000 1.000 1.000 -0.990 1.000 1.000 1.000 4.010 -0.741 -1.232 -0.498

A2 0.000 0.722 0.792 -0.022 0.802 0.617 -0.091 0.009 2.107 -0.741 0.074 -1.152

A3 20.000 0.650 0.925 2.006 -0.169 1.127 2.443 2.038 8.369 0.106 -0.056 1.002
A4 50.000 1.352 0.853 1.818 -0.377 1.050 2.145 1.849 7.338 1.375 1.214 0.648

B1 0.000 0.000 1.000 1.000 -0.990 1.000 1.000 1.000 4.010 -0.770 -1.380 -1.160

B2 75.000 1.219 4.156 16.687 -12.612 5.639 11.606 9.340 34.818 1.424 0.718 0.080
B3 5.263 0.748 3.499 14.361 -10.461 4.610 8.350 7.773 28.133 -0.616 -0.094 -0.189

B4 25.000 1.242 4.759 1.568 -0.163 5.532 37.049 15.624 64.369 -0.038 0.756 1.270

C1 0.000 0.000 1.000 1.000 -0.990 1.000 1.000 1.000 4.010 -0.522 -1.238 -0.927
C2 500.000 0.650 3.163 0.792 -2.564 1.954 1.000 0.833 5.178 1.499 -0.151 0.352

C3 16.667 1.449 3.837 0.821 -2.772 2.255 1.000 0.857 5.998 -0.455 1.184 1.250

C4 0.000 0.863 1.570 1.000 -1.577 1.247 1.000 1.000 4.240 -0.522 0.205 -0.675

D1 0.000 0.000 1.000 1.000 -0.990 1.000 1.000 1.000 4.010 -0.783 -1.500 -0.059

D2 200.000 1.000 0.876 2.007 -1.319 0.823 1.818 1.727 5.932 1.306 0.500 1.353
D3 100.000 1.000 0.534 0.523 0.520 0.575 0.778 0.832 3.761 0.261 0.500 -0.241

D4 0.000 1.000 0.705 0.266 0.427 0.611 0.254 0.393 2.656 -0.783 0.500 -1.053

E1 0.000 0.000 1.000 1.000 -0.990 1.000 1.000 1.000 4.010 -0.654 -0.852 -1.149
E2 63.636 0.964 2.032 0.822 -1.402 1.402 0.913 0.898 4.665 1.151 1.101 0.673

E3 5.556 0.297 2.078 0.837 -1.552 1.432 0.897 0.902 4.594 -0.497 -0.249 0.476

First we graphed the set of six quality factors against SDIe for each of the five

projects and were unable to see any common trends consistent in the majority of the

projects. We next graphed each quality factor against SDIe for each package across the

iterations. Once again, although we saw some relationship between different quality

factors for different packages, no common trend emerged. We next graphed the

www.manaraa.com

 74

normalized values of the SDI, SDIe, and the TQI for each set of iterations for each

project. We were able to detect some interesting relationships from these graphs.

-1.500

-1.000

-0.500

0.000

0.500

1.000

1.500

2.000

A1 A2 A3 A4

Project A Iterations

No
rm

al
iz

ed
 V

al
ue

s

 SDI
 SDIe
 TQI

Figure 4.9: Project A – TQI vs. Stability

From a comparison of the graphs of the stability metrics and the TQI value for

Project A in Figure 4.9 above, we were unable to determine that the TQI value could be

used to demonstrate stability across the iterations. When we performed a qualitative

examination of the development process, it was discovered that the students did not

deliver any new classes at iteration number two but instead spent their time improving

their existing code instead of adding new classes. Also, between iterations two and

three, only one class was added and four out of the five classes already existing were

refined. At the final iteration, three new classes were added in an apparent mad dash for

the finish line. The uneven division of work across the iterations and the seeming rush

at the end of the project should have resulted in the TQI value going down as it did.

www.manaraa.com

 75

Although the SDI metric graph seemed to follow the TQI graph during the first three

iterations, the rush at the end apparently affected the final iteration differently.

-2.000

-1.500

-1.000

-0.500

0.000

0.500

1.000

1.500

2.000

B1 B2 B3 B4

Project B Iterations

No
rm

al
iz

ed
 V

al
ue

s

 SDI
 SDIe
 TQI

Figure 4.10: Project B – TQI vs. Stability

Figure 4.10 above for Project B shows that both the stability metrics graphs

follow the graph of TQI. We should point out that, from a qualitative inspection, this

student project did adhere to the extreme programming paradigm in a much closer

fashion than did the previous Project A.

www.manaraa.com

 76

-1.500

-1.000

-0.500

0.000

0.500

1.000

1.500

2.000

C1 C2 C3 C4

Project C Iterations

No
rm

al
iz

ed
 V

al
ue

s
 SDI
 SDIe
 TQI

Figure 4.11: Project C – TQI vs. Stability

 A comparison of the graphs for Project C in Figure 4.11 above demonstrates that

the graph of TQI closely follows the SDIe metric graph. From another qualitative

examination, this programming team also followed the extreme programming model

and delivered a successful project.

www.manaraa.com

 77

-2.000

-1.500

-1.000

-0.500

0.000

0.500

1.000

1.500

D1 D2 D3 D4

Project D Iterations

No
rm

al
iz

ed
 V

al
ue

s
 SDI
 SDIe
 TQI

Figure 4.12: Project D – TQI vs. Stability

 As were all the other projects described previously, Project D was also assigned

to be implemented using extreme programming. Upon delivery, it was discovered that

apparently the students on the programming team failed to grasp the concept in which

increasing functionality is delivered at each iteration. After the first iteration the team

removed all the classes and delivered a totally different set of classes. On the third

iteration the original functionality from the first iteration was reintroduced. This caused

some very interesting values for SDIe. We might suppose that possibly this led to the

fact that the SDIe metric did not closely follow the TQI graph. The SDI metric defined

in Li et al. does in fact closely approximate the TQI graph [Li et al., 2000].

www.manaraa.com

 78

-1.500

-1.000

-0.500

0.000

0.500

1.000

1.500

E1 E2 E3

Project E Iterations

No
rm

al
iz

ed
 V

al
ue

s
 SDI
 SDIe
 TQI

Figure 4.13: Project E – TQI vs. Stability

 This fifth software engineering project, Project E, implements the same

application as did Project A. Because the project team had some difficulty with their

second iteration, there are only three iterations. The iteration listed as E2 above was in

fact delivered when the other programming teams were delivering their third iteration.

This might explain the steep increase in the graphs of the stability metrics or the fact

that the graphs of Project A and Project E are so different. We again notice the striking

similarities in the graphs of both the stability metrics with the graph of TQI.

 Table 4.7 demonstrates the correlation of the stability metrics, SDI and SDIe,

with the Bansiya’s Total Quality Index, TQI. There is a correlation between each of the

stability metrics and TQI with a somewhat stronger correlation with SDI.

www.manaraa.com

 79

Table 4.7: Spearman’s Correlation of Stability Metrics and TQI

 SDI SDIe
Correlation .618 .474
P-value .002 .022
Significant at α = 0.05? Yes Yes
Significant at α = 0.01? Yes No

4.3 Discussion

 We investigated the new SDIe metric as proposed by Olague et al. through the

analysis of five highly iterative projects. The data presented in this study serve to

further demonstrate the SDIe metric is a measure which can be used to characterize

system stability.

 Probably the most important result of this study is that the classes-changed

category is a very important category to be used in measuring stability. Because the

SDIe metric does not use names changed, based on our experience in this project, it is

certainly easier to automate than the original SDI metric, since determining whether a

class name has been changed requires a human investigation of the source code. It is

true that names changed could be a measure of stability that is missed by the SDIe

metric. It should be noted that while the SDI metric may be determined during design

and hence could serve as a measure of design stability, the SDIe metric requires metrics

be collected from the source code.

The statistical analysis of all five projects was not conclusive due to the lack of

significant results; so it is unclear overall whether the SDIe metric measures something

different to what is measured by the Chidamber and Kemerer metrics [Chidamber and

www.manaraa.com

 80

Kemerer, 1994]. However, based on the results one wonders in particular whether the

Sum of LCOM, Sum of CBO, and Sum of RFC metrics might have some overlap with

SDIe. Additional study is needed. We did discover that there are exceptional

circumstances which would give a misleading value for the SDIe metric as demonstrated

within Project D. (In this case, not correctly following the given project development

model was the cause.)

In SDIe the complete Cantata metrics set, as provided by the commercial

Cantata++ tool, was used to determine whether or not a class changed. In our study,

this category of “classes changed” turned out to be important. However, some metrics

in the Cantata set are not as useful as some other metrics for determining the changes in

a class. For example, the ACC_EXTMETH (accessible external methods) for a class

might change due to method changes in other classes while the actual code for the class

is unchanged. Other metrics such as the ACC_USERFUNC (accessible non-member

functions) and the ACC_SYSFUNC (accessible non-member functions declared in

system header file) can also demonstrate changed values without the actual code of the

class changing. Another point of difference arises from the use of library classes and

how their use is reflected in the inheritance metrics. Also, using changes in the

arbitrary set of metrics provided by a particular commercial metrics tool is far too

connected with a proprietary tool to be repeatable; the company might change the

particular set of metrics without warning, and thus metrics analysis using SDIe might

not be repeatable on future metrics tool releases. Thus, a better SDIe would be

measured using a particular set of metrics, with clearly defined definitions. This would

www.manaraa.com

 81

reduce dependence on a single tool. Exactly which set of metrics is best requires further

study.

A different method to measure classes changed would involve examining actual

changes in executable code. This is work intensive, but might have greater accuracy.

This is similar to work previously performed by Alshayeb and Li [Alshayeb and Li,

2005; Alshayeb and Li, 2003]. This is possible future research.

www.manaraa.com

 82

CHAPTER 5

THE RELATIONSHIP OF METRICS AND FAULTS

Although stability is used to indicate maturity and is usually calculated as the

number of modifications to the source code, some authors [Boudnik, 2008: Repenci,

2008] define stability in terms of fault density. The argument would be, the fewer the

faults, the more stable the software (although fault density is more commonly

considered a measure of software reliability).

Therefore, for completeness in our stability study, we examine the ability of

various software metrics to predict faults. We considered the C&K metrics as fault

predictors as they are probably the best known object-oriented metrics. Empirical

validation of this type has been performed on the class level by several researchers

including Olague et al. and El Emam et al. for industrial software [Olague et al., 2007;

El Emam et al., 2001].

5.1 Spearman’s Correlation

 To determine whether any one of the six C&K metrics might be good individual

fault indicators, we calculated the Spearman’s correlation between the fault number and

each of the metrics. The results are given in the following Table 5.1.

www.manaraa.com

 83

Table 5.1: Spearman’s Correlation of C&K vs. Faults

Metric CBO DIT LCOM NOC RFC WMC

Spearman’s rho 0.152 -0.015 0.016 -0.148 0.232 0.240

Significance 0.534 0.952 0.950 0.546 0.338 0.322

These values were calculated using SPSS® 15.0. For a two-tailed test, these

values did not indicate that any of the individual metrics would be a good fault predictor

since none of the results were significant. This led us to consider linear combinations of

the metrics as possible predictors of fault-proneness.

5.2 Collinearity Analysis

We then performed a collinearity analysis of the six C&K metrics was

performed to realize which metrics could best be used within a model for predicting

fault-proneness. The variance inflation factor (VIF) is the reciprocal of the tolerance

which indicates the variance percentage unaccounted for by other independent variables

within the regression equation [Olague et al., 2007]. The VIF value may be used as a

threshold for determining whether multicollinearity exists [Mansfield and Helms,

1982]. The condition number, the ratio of the square root of the largest eigenvalue to all

the others, is also an indicator that multicollinearity may be a problem [Olague et al.,

2007]. A rule of thumb used for linear regression is a threshold of 10 for VIF [Olague

www.manaraa.com

 84

et al., 2007]. All six metrics were first analyzed for our first model, Model 1, with the

results of the VIF and condition number given in Appendix H, Table H.1.

 The large values of the VIF for the CBO, RFC, and WMC along with the large

value of the WMC condition number indicate that collinearity may be a problem. We

removed the RFC metric to form Model 2 with the remaining five metrics (CBO, DIT,

LCOM, NOC, and WMC). The results of the analysis are given in Appendix H,

Table H.2.

 The resulting VIF values are substantially reduced and the condition numbers

are all in a good range as well with possibly the exception of the WMC metric. We

then performed a linear regression of Model 2 with faults. The results of the linear

regression are given in Table H.3, Appendix H.

 The results in Table H.3 led us to look for other models since this model was not

significant. We considered another group of the C&K metrics which we labeled

Model 3 in which we replaced the RFC metric and removed the WMC metric since it

was the metric with the largest condition number. The results of the collinearity

analysis of Model 3 are given in Appendix H, Table H.4.

 Although the VIF values are in an acceptable range, the condition number for

RFC is questionable. However, we performed linear regression of Model 3 versus faults

to determine whether this model is significant. Table H.5, Appendix H, gives the

results of the linear regression using Model 3.

www.manaraa.com

 85

Model 3’s results from the linear regression versus faults were no more

promising than those of Model 2. Again, the results were not significant. We then

considered removing two of the metrics (RFC and WMC) which had the two largest

condition numbers in our original Model 1.

The analysis of the collinearity of Model 4 given in Appendix H, Table H.6,

gives both acceptable VIF and Condition numbers for the four metrics of CBO, DIT,

LCOM, and NOC. We proceeded with a linear regression versus the fault values with

the results given in Table H.7. The results for Model 4 also do not provide significant

results.

5.3 Discussion

We continued considering other models of combinations of metrics in the

manner demonstrated above but without any success. Thus, our attempt to discover a

model to predict fault-proneness using the C&K metrics on our data was unsuccessful.

These results were similar to those found by Olague et al. in 2007 [Olague et al., 2007].

However, other researchers have found successful C&K fault prediction models. Some

of these fault prediction models were achieved using data mining techniques which are

not sensitive to collinearity problems [Olague, 2006].

www.manaraa.com

 86

CHAPTER 6

THE RELATIONSHIPS OF FAULTS, REUSABILITY AND

REFACTORING

Refactoring is an integral aspect of agile software development [Fowler, 1999].

For this reason, the impact of refactoring on reusability is an important part of our

research. We used data gathered from five different agile projects to consider the

relationship of faults, reusability ratings, and refactoring numbers. Four of the projects

had four iterations each and one project had only three iterations. All of these project

teams collected fault and refactoring data during software development. The reusability

values which were used were obtained by averaging the expert opinions given by the

evaluators for each class. This kind of averaging is acceptable due to the overall good

rwg values per class. See our earlier discussion in Chapter 3.

We began our investigation of the relationships of faults, reusability and

refactoring by considering the graphs of each of the three values. In order to consider

these values on the same graph, we normalized each set of values: faults, reusability,

and refactoring. Normalization or standardization was accomplished by finding the

mean and standard deviation of each of the concepts (faults, reusability or refactoring)

and then subtracting the corresponding mean and dividing by the standard deviation.

www.manaraa.com

 87

These calculations were performed using the STANDARDIZE function in

Excel. The original values along with the normalized values are given in Table 6.1.

We graphed both the original and the normalized values.

Table 6.1: Faults, Refactoring and Reusability

 Original Values Normalized Values
Iteration fault refactoring Reusability faults refactoring reusability

A1 31 0 3.286 1.115 -1.174 1.196
A2 12 10 2.000 -1.306 0.168 -0.939
A3 22 7 2.143 -0.032 -0.235 -0.701
A4 24 18 2.833 0.223 1.241 0.445

Iteration fault refactoring Reusability faults refactoring reusability
B1 50 0 2.714 1.474 -1.098 -0.048
B2 10 23 2.571 -0.235 0.433 -0.358
B3 2 34 2.286 -0.577 1.165 -0.977
B4 0 9 3.375 -0.662 -0.499 1.384

Iteration fault refactoring Reusability faults refactoring reusability
C1 177 86 3.286 0.825 -0.759 1.201
C2 151 230 2.857 0.383 -0.047 -0.240
C3 143 528 2.571 0.247 1.427 -1.201
C4 43 114 3.000 -1.454 -0.621 0.240

Iteration fault refactoring reusability faults refactoring reusability
D1 0 0 2.429 -0.500 -0.506 -0.369
D2 10 120 3.857 1.500 1.500 1.477
D3 0 0 2.429 -0.500 -0.506 -0.369
D4 0 1 2.143 -0.500 -0.489 -0.739

Iteration fault refactoring reusability faults refactoring reusability
E1 22 35 3.000 -0.581 0.226 1.121
E2 264 52 2.429 1.155 0.867 -0.801
E3 23 0 2.571 -0.574 -1.094 -0.320

www.manaraa.com

 88

0

5

10

15

20

25

30

35

A1 A2 A3 A4

P rojec t A Itera tions

U
n

N
o

rm
al

iz
ed

 V
al

u
es

fault

refactoring

reus ability

Figure 6.1: Project A Unnormalized Comparison

-1.5

-1

-0.5

0

0.5

1

1.5

A1 A2 A3 A4

P rojec t A Itera tions

N
o

rm
al

iz
ed

 V
al

u
es

faults

refactoring

reus ability

Figure 6.2: Project A Normalized Comparison

www.manaraa.com

 89

0

10

20

30

40

50

60

B1 B2 B3 B4

P rojec t B Itera tions

U
n

N
o

rm
al

iz
ed

 V
al

u
es

fault

refactoring

reus ability

Figure 6.3: Project B Unnormalized Comparison

-1.5

-1

-0.5

0

0.5

1

1.5

2

B1 B2 B3 B4

P rojec t B Itera tions

N
o

rm
al

iz
ed

 V
al

u
es

faults

refactoring

reus ability

Figure 6.4: Project B Normalized Comparison

www.manaraa.com

 90

0

100

200

300

400

500

600

C 1 C 2 C 3 C 4

P rojec t C Itera tions

U
n

N
o

rm
al

iz
ed

 V
al

u
es

fault

refactoring

reus ability

Figure 6.5: Project C Unnormalized Comparison

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

C 1 C 2 C 3 C 4

P rojec t C Itera tions

N
o

rm
al

iz
ed

 V
al

u
es

faults

refactoring

reus ability

Figure 6.6: Project C Normalized Comparison

www.manaraa.com

 91

0

20

40

60

80

100

120

140

D1 D2 D3 D4

P rojec t D Itera tions

U
n

N
o

rm
al

iz
ed

 V
al

u
es

fault

refactoring

reus ability

Figure 6.7: Project D Unnormalized Comparison

-1

-0.5

0

0.5

1

1.5

2

D1 D2 D3 D4

P rojec t D Itera tions

N
o

rm
al

iz
ed

 V
al

u
es

faults

refactoring

reus ability

Figure 6.8: Project D Normalized Comparison

www.manaraa.com

 92

0

50

100

150

200

250

300

E 1 E 2 E 3

P rojec t E Itera tions

U
n

N
o

rm
al

iz
ed

 V
al

u
es

fault

refactoring

reus ability

Figure 6.9: Project E Unnormalized Comparison

-1.5

-1

-0.5

0

0.5

1

1.5

E 1 E 2 E 3

P rojec t E Itera tions

N
o

rm
al

iz
ed

 V
al

u
es

faults

refactoring

reus ability

Figure 6.10: Project E Normalized Comparison

www.manaraa.com

 93

 The unnormalized graphs in Figures 6.1, 6.3, 6.5, 6.7, and 6.9 were difficult to

interpret due to the great differences in the scales for the three concepts of faults,

refactoring, and reusability. We were unable to see the actual trends of the reusability

graphs because of their relative smallness compared to refactoring values and faults.

When we normalized the values which placed them on the same relative scale, we were

able to get a better representation of their relationships.

 Figures 6.2, 6.4, 6.6, 6.8, and 6.10 tend to indicate that some of the refactorings

had as their purpose the repair of faults and did not make the code more reusable as

viewed by the evaluators (as indicated by a reduction in the reusability rating). We

infer this from an increase in refactorings resulting in an increase in the number of

faults repaired at certain iterations. At other times the refactorings did produce a higher

reusability rating from the experts. This may have been a result of the unfamiliarity of

the concept of refactoring to student programmers and the manual implementation of

refactoring techniques.

 We further investigated the possible relationships of these values by performing

a Spearman’s rank correlation on pairs of values. The fault values, refactoring values

and reusability averages were used for the nineteen agile iterations. The results of the

correlations are given in Table 6.2.

www.manaraa.com

 94

Table 6.2: Spearman’s Rank Correlation of Faults, Refactoring and Reusability

Faults vs. Refactoring

Correlation
Coefficient

Significance

(2-tailed)
0.513 0.025
Faults vs. Reusability

Correlation
Coefficient

Significance

(2-tailed)
0.265 0.273

Refactoring vs. Reusability

Correlation
Coefficient

Significance

(2-tailed)
0.350 0.142

 The results of the correlation analysis demonstrate that the faults and refactoring

values correlated with a significance of 0.025, which is considered a moderately strong

correlation [Cohen, 1990]. However, the faults and reusability did not correlate and

neither did the refactoring and reusability ratings. Although we might expect that the

refactoring values should correlate with the reusability values due to the emphasis on

refactoring to make the code simple which would supposedly result in more reusable

code, we did not find this in our data. The novelty of the refactoring process and the

necessity of performing refactorings manually might partially explain why refactoring

correlated with faults and did not correlate with reusability. We did not expect faults to

correlate with reusability which is what we found with our data.

www.manaraa.com

 95

6.1 Discussion

 In summary, this study showed that refactorings indicated faults but not

reusability, which was surprising. Possibly the use of refactoring tools would have

removed the connection of refactoring with faults. This could be an area of future

research. The lack of a relationship between refactoring and reusability tends to

indicate that reusable software is not a typical outcome of the agile software

development process.

www.manaraa.com

 96

CHAPTER 7

COMPARISON OF REUSABILITY OF SOFTWARE DEVELOPED

USING TRADITIONAL PLAN-BASED METHODS WITH

SOFTWARE DEVELOPED USING AGILE METHODS

The popularity of the agile software development paradigm in the literature and

reportedly in practice led us to consider whether or not the software developed using

agile methods is more reusable than the software developed using a traditional plan-

based method. As we mentioned in the introduction, some authors have claimed that

developing reusable software within an agile paradigm is quite achievable [Heinecke

et al., 2003]. Some authors go further and imply that the intrinsic characteristics of the

agile paradigm (primarily the emphasis on simple and understandable software) tend to

result in reusable software [Knoernschild, 2006]. However, the agile paradigm’s

emphasis on simplicity of software violates a widely held belief: that software must be

made as generic as possible in order to be reused in many different environments [Baum

and Becker, 2000].

In this portion of our study, we compared human evaluators’ reusability ratings

of software developed using an agile method to software developed using a plan-based

method. This consisted of two separate experiments, a paired experiment and an

www.manaraa.com

 97

unpaired experiment. These experiments were performed on a per-class level. That is,

the reusability of the classes was examined, not the (separately rated) reusability of the

packages.

The paired experiment examined five agilely developed projects and five

traditionally developed projects consisting of a total of fifty six classes. The unpaired

experiment examined five traditionally developed projects and five agilely developed

projects with a total of ninety five classes.

In the “unpaired” grouping, we specifically did not want evaluators of an agile

project to be the same evaluators for the non-agile version of the project. The purpose

here was to minimize any bias that resulted from the evaluator having already seen

another version of the same project. In the “paired” grouping, we gave the agile and

non-agile versions of the same project to the same evaluators. The purpose here was to

minimize variance resulting from different evaluators with different opinions.

 For each experiment, the hypothesis to be tested was as follows:

 H0: There is no significant difference in the reusability of the software

developed using highly iterative methods from those developed using

traditional plan-based methods.

 H1: There is a significant difference in the reusability of the software

developed using highly iterative methods from that developed using

traditional plan-based methods.

For each class in the unpaired experiment, there were seven expert ratings of

reusability. We were able to compute the average of reusability for each class over

www.manaraa.com

 98

these seven experts since the rWG(J) interrater reliability values were acceptable per class

(see Chapter 3 for a further discussion). Using the Kolmogorov-Smirnoff test, we

determined the data in both the paired and unpaired experiments was normally

distributed.

Each class can be considered to be independent of each other class in the

software. This should be true since all the software was developed using the object-

oriented paradigm. The object-oriented paradigm specifies that encapsulation, or

information hiding, is the primary objective when defining each class [Snyder, 1986].

Encapsulation means that interdependencies between classes are kept to an absolute

minimum. Thus, the reusability ratings of each class can be considered independent.

Since the data was normally distributed, and the classes are independent, it was

legitimate to compare the mean of the reusability ratings of the agilely-developed

classes to the mean of the classes developed using a plan-based method using a t-test―

the statistical assumptions behind the t-test were met.

We began the study of reusability by taking the average of the reusability ratings

for each of the classes within the paired and unpaired data and graphing a box plot for

each grouping. The box plot supplied initial data analysis and summary of the data.

The box begins at the twenty-fifth percentile and stretches to the seventy-fifth

percentile. The median or fiftieth percentile is marked with a line within the box. Any

outliers are indicated as dots outside the box.

www.manaraa.com

 99

Figure 7.1: Paired Evaluations Comparison

 Figure 7.1 represents the box plot for the paired data. The median of the

traditional (nonagile) class reusability averages is substantially higher than the agile

median. There was only a small amount of overlap of the two boxes. This tends to

indicate that the medians of the agile and nonagile software are different. Since the

nonagile is higher than the agile, it tends to indicate that the reusability of nonagile

software is higher than that of agile software. Next, we examined the unpaired data.

The results of this analysis are given in Figure 7.2.

Agile NonAgile

2.00

3.00

4.00

R
e
u
s
a
b
i
l
i
t
y

www.manaraa.com

 100

Figure 7.2: Unpaired Evaluations Comparison

 The box plot for the unpaired evaluations in Figure 7.2 above demonstrated an

even greater difference in the reusability ratings of the traditional (nonagile) classes as

compared to the agile classes. The entire box for the nonagile classes is above the box

for the agile classes. Thus, this tends to indicate: first, that the medians are different

between the two methods, and second, that nonagile software is more reusable that agile

software.

Therefore, based on the box plots, we reject the null hypothesis and accept the

alternate hypothesis that there is a significant difference in the reusability of the

software developed using highly iterative methods from that developed using traditional

plan-based methods.

We then performed a t-test to test for the equality of the means of the reusability

ratings of the traditional (nonagile) and agile classes. We performed separate t-tests on

Agile NonAgile
2.00

2.50

3.00

3.50

4.00

R
e
u
s
a
b
i
l
i
t
y

www.manaraa.com

 101

the two groups of data: paired and unpaired. Table 7.1 gives the results of this

statistical analysis (performed using SPSS® 15.0).

Table 7.1: T-Test Values for Testing Reusability

t-Test for Equality of Means
Reusability NonAgile Mean Agile Mean t df Sig (2-tailed)
Paired 3.4165 2.5966 4.873 80 <0.001
Unpaired 3.3393 2.7868 5.685 93 <0.001

Based on the statistical analysis, we reject the null hypothesis that there is no

difference in the reusability of agilely developed software and plan-based developed

software and accept the alternative hypothesis that there is a difference in the means.

The means for the agilely developed software were lower in both groupings.

7.1 Discussion

 Both box plots and t-tests indicated that the reusability of nonagile software is

higher than the reusability of agile software.

www.manaraa.com

 102

CHAPTER 8

CONCLUSIONS

The data gathered and analyzed within this study supported the following

conclusions within the areas of stability, fault prediction, fault, reusability and

refactoring relationships, and the reusability of agile software.

8.1 Stability

 The results of this study validated the claim that the SDIe metric is a measure

which can be used to characterize system stability [Olague et al., 2006]. An important

result was that the classes changed category within the calculation of the SDIe metric is

a very important category to be used in measuring stability. The method of determining

whether a class changed by using whether the metric values changed for calculating the

SDIe value may not be the best method. This is due to the inclusion of metrics in the

complete Cantata++ metrics set (used in the SDIe calculation) which may not be good

metrics to measure class change. For example, the ACC_EXTMETH (accessible

external methods) for a class is an example of a metric value which might change due to

method changes in other classes while the actual code for the class is not changed.

www.manaraa.com

 103

Utilizing an arbitrary commercial metrics tool and the corresponding set of metrics

gathered by the tool for determining whether a class changed is far too connected with a

proprietary tool to be repeatable; the company might change the particular set of metrics

without warning, and thus metrics analysis using SDIe might not be repeatable on future

metrics tool releases [Roden et al., Nov. 2007].

 The collection of metrics using the source code of the project for determining

the classes changed for the SDIe metric value for the project also made it less of a

design stability metric than SDI which does not require that its inputs be gathered from

the source code itself. However, for SDI, a manual inspection of a design or the source

code was necessary to determine if a class name was changed.

 There was a correlation between the Total Quality Index of Bansiya’s quality

model and both stability metrics SDI and SDIe. There was a somewhat stronger

relationship between SDI and TQI. This led us to propose that TQI, whose value could

be easier to automate with less human intervention, could be used for indicating

stability. There was also an apparent stronger relationship of the TQI value with the

stability metrics on those projects which adhered more closely to the extreme

programming practices as determined by a subjective evaluation by the instructor.

Thus, potentially the TQI value compared with the stability metrics might serve as an

indicator to management as to whether a development team is following the extreme

programming practices.

www.manaraa.com

 104

8.2 C&K Metrics and Fault-Proneness

 The results of this study did not support the development of a model based on

the C&K metrics to predict fault-proneness . This was in opposition to the results

reached in some other similar studies but is in agreement with others [Olague et al.,

2007; El Emam et al., 2001; Tang et al., 1999]. El Emam et al. stated that class size

had a confounding effect on the validity of using the C&K metrics to predict fault-

proneness. Because our classes came from student projects which are all of a relatively

small size compared to much industrial software, we might conclude that this was

where our difficulty arose in attempting to development a model to predict faults using

the C&K metrics.

8.3 Faults, Reusability and Refactoring

 We first inspected the relationship of the faults, reusability, and refactoring

through graphical methods. The comparison of the three values highlighted the fact the

refactorings performed on an iteration did not always result in more reusable code as

evaluated by the experts. There were instances when refactorings resulted in more

reusable code but other times when the code decreased in reusability and increased in

faults repaired. Apparently some refactorings were just used to repair faults and not to

improve the quality of the design. This might partially be explained by using student

projects for this study in which the refactoring was performed manually―this might

introduce more errors than if automated refactoring were performed. Secondly, because

refactoring was a new topic introduced to the students before they began their

www.manaraa.com

 105

assignment, their expertise in refactoring was limited and opportunities for refactoring

might have been overlooked.

 Statistical analysis indicated a positive correlation between faults and

refactoring, as we might expect due to the opportunities for introducing both syntactic

and logical errors when attempting to refactor manually. Although we expected that

there might be a correlation between refactoring and reusability, there was none for our

data. There was also no correlation between faults and reusability which was more

expected.

8.4 Reusability of Traditionally Developed Software Compared to Agile Software

 Once again we first used a graphical representation to compare the reusability

ratings of the classes of traditionally developed software to the reusability ratings of

classes developed using agile methods. Data was graphed using the paired data

evaluations and the unpaired evaluations and gave us our first indication that the

traditional projects possessed a higher reusability rating. We then performed statistical

analysis using a t-test. The results of the t-test supported what we had seen in the

graphs, that is: the software developed using traditional plan-based methods had a

higher reusability rating than did the software developed using agile methods.

www.manaraa.com

 106

CHAPTER 9

FUTURE RESEARCH

 There are several opportunities for study. Some future work could be done using

the data we collected for this study. Other future work could be expanded to other sets

of data. First, methods for classifying how a class has changed that could be used in

calculating the SDIe metric need to be considered. Possible options include using actual

code changed or using a specific set of recognized metrics changed. Secondly, further

validation of the relationship of the stability metrics with the TQI value is needed.

 The evaluator data collected for our study using the package questionnaire also

included responses on the package level for hierarchy, size, flexibility,

understandability, functionality, extendibility, effectiveness and total quality. Because

we also have fault and refactoring data available for these packages, we might look for

relationships between faults and refactoring and the other various evaluator quality

ratings. We might also consider the relationships of these other evaluator quality

ratings to how the projects were developed, whether by traditional methods or agile

methods. The relationship of the QMOOD metrics to the expert total quality rating from

the package questionnaire is another possible area of research [Bansiya and Davis,

2002].

www.manaraa.com

 107

 Similarly, the class questionnaire resulted in responses for cohesion, coupling,

modularity, interface, documentation, size, complexity, simplicity, encapsulation,

composition, inheritance, abstraction, and polymorphism. The relationship of these

responses could be analyzed relative to how the class was developed. An analysis of

possible interrelations of some of the responses might also be explored.

 Data was also gathered by a demographics questionnaire (a unique evaluator

code was employed to associate evaluations to demographics in order to insure

anonymity). The demographic data was not used within our study but gives opportunity

for consideration from several perspectives. Differences in the background of

evaluators could be investigated in relation to how their background affected their

various quality ratings.

 Another avenue of study might be concerned with the type of application

assigned and what effect it might have on the ratings. Because there were three similar

in complexity projects assigned as both traditional and agile projects for the same time

span, we might consider whether the type of project was a factor in the expert

evaluations.

www.manaraa.com

 108

APPENDICES

www.manaraa.com

 109

APPENDIX A

CLASS QUESTIONNAIRE

www.manaraa.com

 110

Software Quality Questionnaire for Each Class in
a Package

Part I
Directions:
This questionnaire contains statements about code properties. Definition of code
properties and criteria is given. Select the appropriate number that you think is most
descriptive of the class

1. Cohesion: Assesses the relatedness of methods and attributes in class. Strong

overlap in the method parameters and attribute types is an indication of strong
cohesion.

 How big is the class in terms of number of attributes and number of
methods? (A large class is less likely to be cohesive)?

 Are methods in the class using disjoint sets of attributes (do there exist
methods that have no attributes in common with other methods -- this could
be a hint that the class should be broken into two or more classes)?

 Are the methods in the class closely related in functionality?

Now, using the criteria stated in the above question, rate the class for cohesiveness.

5 4 3 2 1
Excellent Good Fair Poor Awful

2. Coupling: Defines the interdependency of an object on other objects in a design. It

is measure of the number of other objects that would have to be accessed by an
object in order for that object to function correctly.

 Are class methods using global data?
 Does the class have friend functions or classes?
 How many class methods access the attributes of any other class not in the

class' s direct hierarchy? (list of direct ancestor classes)
 How many class methods access the methods of any other class not in the

class' direct hierarchy? (list of direct ancestor classes)
 How many class methods access any external-to-the-class (standalone)

functions (except for methods of other classes)?
 Are there any variable definitions, either in the class definition, or local to a

member function, that uses another class as an abstract data type?

Now, using the criteria stated in the above question, and any other criteria you think is
appropriate, rate the class for coupling.

5 4 3 2 1
Excellent Good Fair Poor Awful

www.manaraa.com

 111

3. Modularity: Considering the cohesion and coupling and any other criteria that you

think is appropiate , rate the class for modularity.

5 4 3 2 1
Excellent Good Fair Poor Awful

4. Interface: A count of number of public methods that are available as services to

other classes. This is a measure of the services that a class provides.
 How many public methods are there?
 How many formal parameters, on the average, do the public method

definitions have?
 Are the public methods at the appropriate granularity level? That is, do they

do too much, not enough, or too little for the functionality provided by the
class? Should some of their required functionality be moved to an internal
private method, then that method be called by the public method?

 Are the public methods clean or easy to understand?

Now, using the criteria stated in the above question, and any other criteria you think is
appropriate, rate the class for interface.

5 4 3 2 1
Excellent Good Fair Poor Awful

5. Documentation

 How many comments are there in the class definition?
 How many comments are there in each method, on the average?
 What percentages of methods have any comments at all?
 Are the comments in general well written, understandable, or meaningful?
 Are the identifier names (class names, variable names, method names, etc.)

well chosen, understandable, or meaningful?

Now, using the criteria stated in the above question, and any other criteria you think is
appropriate, rate the class for documentation.

5 4 3 2 1
Excellent Good Fair Poor Awful

6. Size: This is the measure of how big is the class in terms of number of attributes

methods etc.
 How big is the class in terms of number of attributes?
 How big is the class in terms of number of methods?
 How many lines of executable semicolons are there in the class definition

(ignoring comments, blank lines, etc.)?
 How many executable semicolons are there, on the average, in the methods?

www.manaraa.com

 112

 How many formal parameters are there in the method definitions, on the
average?

Now, using the criteria stated in the above questions, and any other criteria you think is
appropriate, rate the class for size.

5 4 3 2 1
Very Large Large Medium Small Extra Small

7. Complexity: A measure of the degree of difficulty in understanding and

comprehending the internal and external structure of classes and their relationships.
 How complex is the code in the methods, on the average?

Now, using the criteria stated in the above question, and any other criteria you think is
appropriate, rate the class for complexity

5 4 3 2 1
Very Complex Complex Mostly

Complex
Somewhat
Complex

Simple

8. Simplicity: Considering the Size and complexity and any other criteria that you
think is appropiate , rate the class for simplicity.

5 4 3 2 1

Excellent Good Fair Poor Awful

9. Encapsulation: Defined as the enclosing of data and behavior within a single

construct.
 How many attributes are declared in this class?
 How many attributes are declared private in this class?

Now, using the criteria stated in the above question, and any other criteria you think is
appropriate, rate the class for encapsulation

5 4 3 2 1
Excellent Good Fair Poor Awful

10. Composition: This is a measure of aggregation relationships in an object-oriented

design.
 How many user-defined classes are employed as data types in the class?

Now, using the criteria stated in the above question, and any other criteria you think is
appropriate, rate the class for composition

5 4 3 2 1
Excellent Good Fair Poor Awful

www.manaraa.com

 113

11. Inheritance: This is a measure of the “is-a” relationship between classes.

 How many methods are accessible to this class?
 How many methods does this class inherit?

Now, using the criteria stated in the above question, and any other criteria you think is
appropriate, rate the class for inheritance

5 4 3 2 1
Excellent Good Fair Poor Awful

12. Abstraction: This is a measure of generalization – specialization aspect of the

design.
 How many classes does this class inherit from? (That is the number of

classes along all paths from the root classes to this class)
Now, using the criteria stated in the above question, and any other criteria that you think
appropriate, rate the class for abstraction

5 4 3 2 1
Excellent Good Fair Poor Awful

13. Polymorphism: It is the measure of services that are dynamically determined at

run time in an object.
 How many methods exhibit polymorphic behavior?

Now, using the criteria stated in the above question, and any other criteria that you think
appropriate, rate the class for abstraction

5 4 3 2 1
Very Large Large Medium Small Extra Small

Part II
Directions:
 Please rate the quality factor for the class
1. Using the criteria stated in the above questions, and any other criteria you think is

appropriate, rate the class for Reusability-in-the-Class:

5 4 3 2 1
Excellent Good Fair Poor Awful

www.manaraa.com

 114

APPENDIX B

PACKAGE QUESTIONNAIRE

www.manaraa.com

 115

Software Quality Questionnaire for a Package

Part I
Directions:
This questionnaire contains statements about code properties. Definition of code
properties and criteria is given. Select the appropriate number that you think is most
descriptive of the package.

1. Hierarchy: This is the count of the number of non-inherited classes than have

children in a design.
 How many class hierarchies are there in this package?

Now, using the criteria stated in the above question, and any other criteria that you think
is important, rate the class for hierarchy

5 4 3 2 1
Very Large Large Medium Small Extra Small

2. Package Size: This is a measure of how big is the class in terms of number of

classes.
 Now, using the criteria stated above, and any other criteria that you think is
important, rate the class for package size

5 4 3 2 1
Very Large Large Medium Small Extra Small

Part II
Directions:
Please rate the quality factor for the package

2. Based on your analysis of all the classes in the package and any other criteria you

think is appropriate, rate the package for Reusability-in-the-Package

5 4 3 2 1
Excellent Good Fair Poor Awful

3. Based on your analysis of all the classes in the package and any other criteria you

think is appropriate, rate the package for flexibility.

5 4 3 2 1
Excellent Good Fair Poor Awful

4. Based on your analysis of all the classes in the package and any other criteria you

think is appropriate, rate the package for understandability.
5 4 3 2 1

Excellent Good Fair Poor Awful

www.manaraa.com

 116

5. Based on your analysis of all the classes in the package and any other criteria you

think is appropriate, rate the package for functionality.
5 4 3 2 1

Excellent Good Fair Poor Awful

6. Based on your analysis of all the classes in the package and any other criteria you

think is appropriate, rate the package for extendibility.
5 4 3 2 1

Excellent Good Fair Poor Awful

7. Based on your analysis of all the classes in the package and any other criteria you

think is appropriate, rate the package for effectiveness.
5 4 3 2 1

Excellent Good Fair Poor Awful

7. Please rate the given package for total quality of the package

5 4 3 2 1
Excellent Good Fair Poor Awful

www.manaraa.com

 117

APPENDIX C

DEMOGRAPHIC QUESTIONNAIRE

www.manaraa.com

 118

Demographic Information Page

Please enter your unique four digit code:

Years of Experience in C++ (including education):

Years of Experience in Java (including education):

Age:

Ethnicity: (Select one)

European
Heritage(Caucasian) Hispanic Asian African Other

Education Level: (Complete all that apply)

B.S. or B.A. Degree : Major

M.S. or M.A. Degree : Major

Ph.D. : Major

www.manaraa.com

 119

APPENDIX D

EVALUATOR DEMOGRAPHICS

www.manaraa.com

 120

Code Student? C_exp Java_exp Age Ethnicity Bachelors Degree Masters Degree
1295 Y 7 1 40 5 Computer Science
1691 Y 2.00 2.00 22 5 Pursuing CS
1529 Y 12 3 35 5 Aerospace Engineering
1279 Y 6 1 32 5 CS
2432 N 4 2 25 5 computer science
1214 Y 2 1 23 3 Information Technology Computr Science
2376 Y 1 1 24 5 Computer Science
2277 N 5 2 27 5 Computer Science
5013 N 4 1 33 5 computer science
2452 Y 4 1 22 5
2439 Y 3 1 21 5
1859 Y 1 2 22 5 CS and Math
2236 Y 1 2 22 5 CS and Math
1952 Y 6 6 24 5 Computer Science
2274 Y 3 0.5 22 5 Computer Science
2017 Y 3 1 25 3 CS
4750 Y 8 3 23 5
2182 N 7 5 29 4 Computer Science
2064 N 3 3 25 2 Senior
1628 N 4 2 42 5 Computer Science
1546 N 6 6 24 5 Computer Science
1770 N 2 1 32 5
4152 N 4 4 33 5 Computer Engineering
1599 Y 1 3 26 3 Computer Engineering
1500 Y 1 3 26 3 Computer Engineering
1255 Y 4 0 22 3 CS & Engineering Computer Science
1349 Y 4 1.5 23 3 Information Technology Computer Science
1942 N 6 6 22 5 Computer Science
1184 Y 4 1 24 3 computer science computer science
3169 N 7 1 29 5 Computer Science
1876 N 12 4 56 5 Industrial Engineering Theology
2644 Y 4 3 22 5 Computer Science
5299 N 3.5 0 38 5 Computer Science
5217 N 2 0 31 5 BS
5272 N 5 1 24 5 Computer Science
5197 N 4 3 35 5 Math/Computer Science Probability and Stat.
5129 N 4 0 28 5 CS/Math/Physics
5318 N 3.5 0.5 40 5 Math/ Computer Science
5233 N 4 1 24 5 Computer Science
5283 N 3 0 30 5 Computer Science
5259 N 6 0 25 5 Computer Science
5072 N 15 0 47 4 Computer Science

www.manaraa.com

 121

Code Student? C_exp Java_exp Age Ethnicity Bachelors Degree Masters Degree
5161 Y 3 0.5 23 5 Computer Science/Math
5137 Y 3 0 23 5
5136 Y 4 1 22 5
5123 Y 3 1 23 2 Computer Science
5096 Y 3 0 22 5
5053 Y 6 3 21 5 Computer Science
5075 Y 4 0 22 5
5134 Y 3 0 20 5
5169 N 6 2 38 5 computer science
5055 Y 4 1 21 5 Computer Science
5349 Y 3 0 22 5
5322 N 10 0 47 5 Computer Science
5013 N 10 0 47 5 Computer Science
5165 Y 4 0 22 5
5372 N 6 2 38 5 computer science
5364 Y 3 1 23 2 Computer Science
5319 Y 4 1 22 5 Computer Science
5018 N 6 2 38 5 computer science
5022 Y 4 1 22 5 Computer Science
5433 N 6 2 26 5 Computer Science
5326 Y 0 0 40 5 CIS computer science
5136 N 4 1 24 5 B.S. ComputerScience
5419 N 15 5 59 5 CS, Biology CS
6757 Y 7 0 23 5 CS / Math / Physics
6001 Y 9 5 25 5 Computer Science Mathematics
5999 N 10 9 31 5 Math/CS Education Computer Science
5707 Y 3 3 21 5
5747 N 7 2 27 5 BS Computer Science
5804 N 5 4 25 5 Computer Science
5775 Y 1 4 22 5 Computer Science
5741 N 5 1 30 5 Computer Science CS. (in progress)
5792 Y 4 1 21 5 Computer Science
5800 N 3 1 25 5 Computer Science Software Engineering
5716 Y 5 3 22 5 Computer Science
5711 Y 4 1 21 5 Computer Science
5746 N 9 2 27 5 Computer Science
5775 Y 1 4 22 5 Computer Science
5733 N 7 1 27 5 CS
5729 Y 3 1 23 3 Computer Science N/A
5742 Y 0 1 22 3 CS CS
5729 Y 3 1 23 3 computer science n/a

www.manaraa.com

 122

Code Student? C_exp Java_exp Age Ethnicity Bachelors Degree Masters Degree
5703 Y 8 5 21 5
5807 N 1 0 40 5 Information Systems Computer Science
5737 Y 4 0 24 5 computer engineering
7006 Y 2 1 31 5 Computer Science S.E. (In progress)
7009 Y 2 1 44 3 EE MS
7018 Y 5 5 30 3 EE MS
7024 Y 3 2 26 3 computer applications Pursuing MS in CS
7027 Y 9 0 29 5 Computer Science
7123 Y 0.5 0.9 25 3 Computer Engineering Computer Science
7126 Y 2 4 24 3 Comp. Engg. pursuing Comp. Sc.
7135 Y 12 4 33 2 Computer Engineering Computer Engineering
7030 Y 3 2 47 5 Science Management Working on MSSE
7033 Y 4 5 23 1 ComputerScience
7036 Y 4 2 22 5 B.S. Computer Science
7039 Y 8 3 23 3 BS ,Major: Computers Computer Science
7042 Y 5 5 23 3 CS CS(ongoing)
7045 Y 2 3 23 3 B-Tech IT MS CS
7048 Y 2 1 23 3 computer Engineering) Computer Science

7051 Y 2 1 24 3 Computer Science Computer Science
7054 Y 2 2 24 2 Computer Science
7084 Y 4 1 24 3 Computer Science Computer Science
7087 Y 1 2 26 3 Elec.s & Comm. Eng. Pursuing CS
7090 Y 4 0 27 3 E. E. Computer Science
7093 Y 0.5 0.5 23 3 Ind. Biotechnology Computer Science
7096 Y 1.25 1 23 3 Electrical Engineering Computer Science
7099 Y 3 2 24 3 B.E in Elec & Comm M.S in C.S
7102 Y 1 1 23 3 Elec & Comm Computer Science
7105 Y 2 2.5 24 3 Electrical&Electronics Computer Science
7108 Y 3 2 22 3 B.E. (Comp Science) Computer science
7117 Y 2.5 4 27 3 Information Technology Computer science
7129 Y 6 2 24 3 Elec & Comm, Eng. Computer Science
7132 Y 0.5 1 22 3 Electrical Engineering Computer Science
7138 Y 2 3 22 3 CS Engineering CS (in progress)
7144 Y 3 3 26 3 MECHANICAL ENG CS
7147 Y 4 4 22 3 Computer Science ComputerScience
7150 Y 3 1 24 3 Computer Science Computer Science

 5=Caucasian 3 = Asian
 4 = Hispanic 2 = African
 3 = Asian 1 = Other

www.manaraa.com

 123

APPENDIX E

HUMAN SUBJECTS COMMITTEE APPROVAL

www.manaraa.com

 124

www.manaraa.com

 125

www.manaraa.com

 126

APPENDIX F

PACKAGE RWG

www.manaraa.com

 127

RWG for Packages
Pa

ck
ag

e

D
at

a
G

ro
up

H
ie

ra
rc

hy

Pa
ck

ag
es

iz
e

R
eu

se

Fl
ex

ib
ilit

y

U
nd

er
st

an
da

bi
lit

y

Fu
nc

tio
na

lit
y

Ex
te

nd
ib

ilit
y

E
ffe

ct
iv

en
es

s

To
ta

lQ
ua

lit
y

TR1 Unpaired 0.762 0.548 0.762 0.262 0.690 0.857 0.333 0.929 0.548
 Paired 0.667 0.714 0.833 0.762 0.881 0.857 0.690 0.667 0.857
 Combined 0.560 0.635 0.810 0.538 0.791 0.865 0.525 0.714 0.723

TR2 Unpaired 0.214 0.595 0.833 0.762 0.762 0.881 0.548 0.714 0.762
 Paired 1.000 0.500 1.000 0.500 1.000 0.833 0.833 0.833 0.833
 Combined 0.394 0.644 0.778 0.839 0.728 0.911 0.661 0.772 0.772

TR3 Unpaired 0.524 0.262 0.857 0.833 0.762 0.929 0.667 0.857 0.857
 Paired 0.100 0.900 0.900 0.850 0.900 0.650 0.850 0.850 1.000
 Combined 0.955 0.954 0.981 0.992 0.987 0.992 0.981 0.992 0.992

TR4 Unpaired 0.262 0.714 -0.119 0.048 0.595 0.333 0.214 0.381 0.595
 Paired 0.179 0.857 0.009 0.795 -0.429 0.464 0.223 0.464 0.571
 Combined -0.071 0.795 -0.033 0.467 -0.062 0.238 0.271 0.343 0.514

TR5 Unpaired 0.857 0.881 0.690 0.429 -0.167 0.500 0.190 0.048 0.357
 Paired 0.625 0.736 0.944 0.944 0.750 0.861 0.361 0.736 0.861
 Combined 0.635 0.719 0.808 0.733 0.342 0.685 0.169 0.408 0.502

E3 Unpaired 0.167 0.690 0.357 0.190 0.262 0.381 0.333 0.333 0.429

C2 Unpaired 0.381 0.714 0.595 0.595 0.762 0.690 0.167 0.690 0.381

C1 Unpaired 0.714 0.762 0.714 0.595 0.190 0.881 0.548 0.762 0.762

E1 Unpaired 0.762 0.857 0.667 0.667 0.095 0.357 0.595 0.262 0.667

C4 Unpaired 0.714 0.714 0.190 0.381 0.714 0.714 0.262 0.762 0.667
 Paired 0.500 0.875 0.653 0.653 0.694 0.819 0.694 0.903 0.944
 Combined 0.600 0.752 0.435 0.533 0.633 0.742 0.542 0.852 0.835

C3 Unpaired 0.524 0.762 0.833 0.667 0.881 0.929 0.762 0.857 0.762

www.manaraa.com

 128

RWG for Packages
Pa

ck
ag

e

D
at

a
G

ro
up

H
ie

ra
rc

hy

Pa
ck

ag
es

iz
e

R
eu

se

Fl
ex

ib
ilit

y

U
nd

er
st

an
da

bi
lit

y

Fu
nc

tio
na

lit
y

Ex
te

nd
ib

ilit
y

Ef
fe

ct
iv

en
es

s

To
ta

lQ
ua

lit
y

E2 Unpaired 0.262 0.429 0.524 0.548 0.333 0.548 0.190
-

0.119 0.548
 Paired 0.778 0.736 0.278 0.694 0.653 0.319 0.569 0.500 0.750
 Combined 0.569 0.619 0.408 0.608 0.542 0.452 0.433 0.275 0.619

P13 Unpaired 0.524 0.762 0.762 0.762 0.881 0.690 0.762 0.762 0.881

D1 Unpaired 0.857 0.833 0.524 0.595 0.048 0.690 0.690 0.833 0.714

D2 Unpaired 0.381 0.762 0.762 0.929 0.762 0.690 0.857 0.690 0.690

D3 Unpaired 0.690 0.881 0.690 0.429 0.548 0.595 0.524 0.524 0.762
 Paired 0.929 0.881 0.762 0.762 0.714 0.548 0.262 0.548 0.690
 Combined 0.799 0.865 0.679 0.558 0.615 0.580 0.371 0.503 0.415

D4 Unpaired 0.595 0.857 0.429 0.595 0.833 0.690 0.595 0.714 0.429
 Paired 0.667 1.000 0.875 0.833 0.667 0.875 1.000 0.875 0.875
 Combined 0.655 0.873 0.464 0.655 0.673 0.764 0.755 0.791 0.600

B1 Unpaired 0.881 0.381 0.714 0.762 0.595 0.524 0.429 0.929 0.500

B2 Unpaired 0.000 0.214 0.190 0.595 0.024 0.762 0.762 0.881 0.667

B3 Unpaired 0.500 0.690 0.381 0.524 0.167 0.857 0.833 0.762 0.690

B4 Unpaired 0.438 0.723 0.723 0.509 0.509 0.750 0.714 0.866 0.714

A1 Unpaired 0.548 0.762 0.381 0.833 0.262 0.333 0.667 0.333 0.595

A2 Unpaired 0.381 0.762 0.833 0.548 0.524 0.714 0.500 0.524 0.833

A3 Unpaired 0.595 0.262 0.595 0.850 0.095 0.167 0.714 0.524 0.357

A4 Unpaired 0.667 0.850 0.317 0.917 0.600 0.317 0.717 0.800 0.650
 Paired 0.850 0.750 0.750 0.850 0.500 0.650 0.650 0.650 0.750
 Combined 0.700 0.791 0.555 0.891 0.578 0.500 0.700 0.755 0.691

www.manaraa.com

 129

APPENDIX G

CLASS RWG

www.manaraa.com

 130

Note: Only final iterations had paired and combined data collected

RWG for Classes

PA
C

K
A

G
E

C
LA

SS

U
np

ai
re

d
R

eu
sa

bi
lit

y

Pa
ire

d
R

eu
sa

bi
lit

y

C
om

bi
ne

d
R

eu
sa

bi
lit

y

P1 P1A 0.524 0.690 0.538
 P1B 0.548 0.524 0.473
 P1C 0.595 0.524 0.569
 P1D 0.690 0.524 0.538

P2 P2A 0.524 0.208 0.464
 P2B 0.429 0.875 0.583
 P2C 0.357 0.542 0.464
 P2D 0.357 0.875 0.355
 P2E 0.381 0.833 0.573
 P2F 0.779 0.542 0.221
 P2G 0.381 0.875 0.591
 P2H 0.722 0.875 0.255
 P2I 0.568 0.833 0.500
 P2J 0.429 0.891 0.191
 P2K 0.333 0.500 0.582
 P2L 0.429 0.333 0.364
 P2M 0.524 0.500 0.418

P3 P3A 0.429 0.900 0.636
 P3B 0.714 0.500 0.673
 P3C 0.595 0.208 0.473
 P3D 0.524 0.900 0.652
 P3E 0.690 0.400 0.561
 P3F 0.524 0.682 0.140
 P3G 0.524 0.850 0.686

P4 P4A -0.119 0.223 0.129
 P4B -0.143 0.000 -0.014
 P4C 0.190 0.438 0.367

P5 P5A 0.381 0.861 0.608
 P5B 0.429 0.750 0.633
 P5C 0.519 0.236 0.444
 P5D 0.664 0.750 0.419
 P5E 0.429 0.403 0.452

www.manaraa.com

 131

RWG for Classes

PA
C

K
A

G
E

C
LA

SS

U
np

ai
re

d
R

eu
sa

bi
lit

y

Pa
ire

d
R

eu
sa

bi
lit

y

C
om

bi
ne

d
R

eu
sa

bi
lit

y

P6 P6A 0.381 n/a n/a
 P6B 0.024 n/a n/a
 P6C 0.667 n/a n/a
 P6D 0.524 n/a n/a
 P6E 0.762 n/a n/a
 P6F 0.524 n/a n/a
 P6G 0.548 n/a n/a
 P6H 0.690 n/a n/a
 P6I 0.333 n/a n/a
 P6J 0.524 n/a n/a
 P6K 0.524 n/a n/a
 P6L 0.357 n/a n/a
 P6M 0.333 n/a n/a
 P6N 0.524 n/a n/a
 P6O 0.442 n/a n/a
 P6P 0.357 n/a n/a
 P6Q 0.614 n/a n/a
 P6R 0.381 n/a n/a
 P6S 0.262 n/a n/a

P7 P7A 0.762 n/a n/a
 P7B 0.429 n/a n/a
 P7C 0.381 n/a n/a
 P7D 0.429 n/a n/a
 P7E 0.548 n/a n/a
 P7F 0.500 n/a n/a

P8 P8A 0.766 n/a n/a

P9 P9A 0.381 n/a n/a
 P9B 0.381 n/a n/a
 P9C 0.548 n/a n/a
 P9D 0.595 n/a n/a
 P9E 0.595 n/a n/a
 P9F 0.500 n/a n/a

www.manaraa.com

 132

RWG for Classes

PA
C

K
A

G
E

C
LA

SS

U
np

ai
re

d
R

eu
sa

bi
lit

y

Pa
ire

d
R

eu
sa

bi
lit

y

C
om

bi
ne

d
R

eu
sa

bi
lit

y

P10 P10A 0.378 0.750 0.408
 P10B 0.381 0.375 0.352
 P10C 0.595 0.625 0.542
 P10D 0.667 0.625 0.608
 P10E 0.667 0.361 0.485
 P10F 0.524 0.500 0.500
 P10G 0.714 0.625 0.685

P11 P11A 0.690 n/a n/a
 P11B 0.524 n/a n/a

P12 P12A 0.442 0.457 0.451
 P12B 0.381 0.278 0.333
 P12C 0.690 0.572 0.581
 P12D 0.690 0.491 0.552
 P12E 0.500 0.403 0.402
 P12F 0.333 0.403 0.335
 P12G 0.357 0.278 0.352
 P12H 0.333 0.528 0.402
 P12I 0.548 0.531 0.540
 P12J 0.381 0.194 0.275
 P12K 0.701 0.504 0.603
 P12L 0.667 0.653 0.485
 P12M 0.714 0.236 0.469
 P12N 0.511 -0.014 -0.231
 P12O 0.524 -0.014 0.267
 P12P 0.619 0.111 0.075
 P12Q 0.714 0.500 0.608
 P12R 0.524 0.361 0.469

www.manaraa.com

 133

RWG for Classes

PA
C

K
A

G
E

C
LA

SS

U
np

ai
re

d
R

eu
sa

bi
lit

y

Pa
ire

d
R

eu
sa

bi
lit

y

C
om

bi
ne

d
R

eu
sa

bi
lit

y

P13 P13A 0.762 n/a n/a
 P13B 0.429 n/a n/a
 P13C 0.595 n/a n/a
 P13D 0.400 n/a n/a
 P13E 0.762 n/a n/a
 P13F 0.690 n/a n/a
 P13G 0.762 n/a n/a
 P13H 0.762 n/a n/a
 P13I 0.429 n/a n/a
 P13J 0.714 n/a n/a
 P13K 0.690 n/a n/a
 P13L 0.881 n/a n/a
 P13M 0.762 n/a n/a
 P13N 0.857 n/a n/a
 P13O 0.595 n/a n/a
 P13P 0.357 n/a n/a

T1 T1A 0.714 n/a n/a
 T1B 0.595 n/a n/a
 T1C 0.762 n/a n/a
 T1D 0.381 n/a n/a

T2 T2A 0.381 n/a n/a
 T2B 0.857 n/a n/a
 T2C 0.762 n/a n/a
 T2D 0.548 n/a n/a

T3 T3A 0.712 0.595 0.649
 T3B 0.433 0.599 0.518
 T3C 0.548 0.762 0.582
 T3D 0.595 0.524 0.549
 T3E 0.667 0.592 0.618
 T3F 0.548 0.357 0.484
 T3G 0.881 0.381 0.385
 T3H 0.690 0.690 0.615

www.manaraa.com

 134

RWG for Classes

PA
C

K
A

G
E

C
LA

SS

U
np

ai
re

d
R

eu
sa

bi
lit

y

Pa
ire

d
R

eu
sa

bi
lit

y

C
om

bi
ne

d
R

eu
sa

bi
lit

y

T4 T4A 0.357 0.208 0.200
 T4B 0.548 0.557 0.540
 T4C 0.429 0.542 0.364
 T4D 0.333 0.667 0.500
 T4E 0.333 0.542 0.264
 T4F 0.548 0.612 0.582
 T4G 0.429 0.542 0.364
 T4H 0.701 0.667 0.664

T5 T5A 0.262 n/a n/a
 T5B 0.690 n/a n/a
 T5C 0.548 n/a n/a
 T5D -0.071 n/a n/a
 T5E 0.429 n/a n/a
 T5F 0.690 n/a n/a
 T5G 0.690 n/a n/a
 T5H 0.690 n/a n/a
 T5I 0.548 n/a n/a
 T5J 0.690 n/a n/a
 T5K 0.262 n/a n/a
 T5L 0.429 n/a n/a

T6 T6A 0.595 n/a n/a
 T6B 0.714 n/a n/a
 T6C 0.429 n/a n/a
 T6D 0.357 n/a n/a
 T6E 0.429 n/a n/a
 T6F 0.357 n/a n/a
 T6G 0.595 n/a n/a
 T6H 0.881 n/a n/a
 T6I 0.381 n/a n/a
 T6J 0.595 n/a n/a
 T6K 0.690 n/a n/a
 T6L 0.857 n/a n/a
 T6M 0.690 n/a n/a
 T6N 0.690 n/a n/a
 T6O 0.095 n/a n/a
 T6P 0.690 n/a n/a
 T6Q 0.595 n/a n/a
 T6R 0.095 n/a n/a
 T6S 0.214 n/a n/a

www.manaraa.com

 135

RWG for Classes

PA
C

K
A

G
E

C
LA

SS

U
np

ai
re

d
R

eu
sa

bi
lit

y

Pa
ire

d
R

eu
sa

bi
lit

y

C
om

bi
ne

d
R

eu
sa

bi
lit

y

T7 T7A 0.524 n/a n/a
 T7B 0.524 n/a n/a
 T7C 0.612 n/a n/a
 T7D 0.589 n/a n/a
 T7E 0.674 n/a n/a
 T7F 0.667 n/a n/a
 T7G 0.524 n/a n/a
 T7H 0.511 n/a n/a
 T7I 0.595 n/a n/a
 T7J 0.481 n/a n/a
 T7K 0.690 n/a n/a
 T7L 0.857 n/a n/a
 T7M 0.690 n/a n/a
 T7N 0.690 n/a n/a
 T7O 0.510 n/a n/a
 T7P 0.690 n/a n/a
 T7Q 0.595 n/a n/a
 T7R 0.822 n/a n/a
 T7S 0.214 n/a n/a
 T7T 0.214 n/a n/a

T8 T8A 0.509 n/a n/a
 T8B 0.723 n/a n/a
 T8C 0.509 n/a n/a
 T8D 0.295 n/a n/a
 T8E 0.857 n/a n/a
 T8F 0.571 n/a n/a
 T8G 0.750 n/a n/a
 T8H 0.857 n/a n/a
 T8I 0.893 n/a n/a
 T8J 0.795 n/a n/a
 T8K 0.714 n/a n/a
 T8L 0.438 n/a n/a
 T8M 0.723 n/a n/a
 T8N 0.652 n/a n/a
 T8O 0.795 n/a n/a
 T8P 0.652 n/a n/a
 T8Q 0.857 n/a n/a
 T8R 0.857 n/a n/a
 T8S 0.571 n/a n/a
 T8T 0.438 n/a n/a
 T8U 0.152 n/a n/a
 T8V 0.690 n/a n/a

www.manaraa.com

 136

RWG for Classes

PA
C

K
A

G
E

C
LA

SS

U
np

ai
re

d
R

eu
sa

bi
lit

y

Pa
ire

d
R

eu
sa

bi
lit

y

C
om

bi
ne

d
R

eu
sa

bi
lit

y

T9 T9A 0.333 n/a n/a
 T9B 0.524 n/a n/a
 T9C 0.381 n/a n/a
 T9D 0.762 n/a n/a
 T9E 0.524 n/a n/a

T10 T10A 0.595 n/a n/a
 T10B 0.333 n/a n/a
 T10C 0.524 n/a n/a
 T10D 0.762 n/a n/a
 T10E 0.500 n/a n/a

T11 T11A 0.595 n/a n/a
 T11B 0.540 n/a n/a
 T11C 0.488 n/a n/a
 T11E 0.429 n/a n/a
 T11F 0.518 n/a n/a

T12 T12A 0.778 0.524 0.685
 T12B 0.500 0.100 0.140
 T12C 0.524 0.850 0.504
 T12D 0.690 0.600 0.561
 T12E 0.262 0.850 0.470
 T12F 0.524 0.750 0.606
 T12H 0.524 0.750 0.606
 T12I 0.262 0.900 0.561

www.manaraa.com

 137

APPENDIX H

COLLINEARITY STUDIES

AND

LINEAR REGRESSION RESULTS

www.manaraa.com

 138

Table H.1: Collinearity Analysis of Model 1

 Table H.2: Collinearity Analysis of Model 2

Model 2
 VIF Condition #
CBO 1.612 2.015
DIT 1.665 2.977
LCOM 1.455 4.27
NOC 1.741 5.656
WMC 1.696 9.781

Table H.3: Linear Regression of Model 2

Linear Regression Results
Model 2

 Coefficient
Standard
Error

Std.
Coefficient t Sig.

Constant 64.834 70.767 - 0.916 0.379
CBO 3.826 11.308 0.112 0.338 0.741
DIT -67.31 63.264 -0.36 -1.064 0.307
LCOM -0.098 0.406 -0.077 -0.243 0.812
NOC 26.501 188.007 0.049 0.141 0.89
WMC 2.176 6.246 0.119 0.348 0.733

Model 1
 VIF Condition #
CBO 18.728 2.218
DIT 1.676 3.176
LCOM 1.805 4.664
NOC 1.806 6.172
RFC 27.578 9.858
WMC 11.357 37.718

www.manaraa.com

 139

Table H.4: Collinearity Analysis of Model 3

Model 3
 VIF Condition #
CBO 3.128 2.048
DIT 1.674 3.09
LCOM 1.401 5.544
NOC 1.804 5.755
RFC 4.112 12.726

Table H.5: Linear Regression of Model 3

Linear Regression Results
Model 3

 Coefficient
Standard
Error

Std.
Coefficient t Sig.

Constant 75.531 62.416 - 1.21 0.248
CBO 0.49 15.801 0.014 0.031 0.976
DIT -64.594 63.634 -0.345 -1.015 0.329
LCOM -0.07 0.4 -0.055 -0.176 0.963
NOC 11.751 191.939 0.022 0.061 0.952
RFC 0.89 4.5 0.105 0.198 0.846

Table H.6: Collinearity Analysis of Model 4

Model 4
 VIF Condition #
CBO 1.492 5.151
DIT 1.517 1.836
LCOM 1.401 2.968
NOC 1.188 4.969

www.manaraa.com

 140

Table H.7: Linear Regression of Model 4

Linear Regression Results
Model 4

 Coefficient
Standard
Error

Std.
Coefficient t Sig.

Constant 84.556 41.115 - 2.057 0.059
CBO 2.75 10.532 0.081 0.261 0.798
DIT -60.74 58.462 -0.324 -1.039 0.316
LCOM -0.071 0.386 -0.055 -0.185 0.856
NOC -10.443 150.301 -0.019 -0.069 0.946

www.manaraa.com

 141

REFERENCES

Abrahamsson, P. & Koskela, J., “Extreme Programming: A Survey of Empirical Data
from a Controlled Case Study.” Proceedings of the 2004 International Symposium on
Empirical Software Engineering 2004 ISESE ’04, 19-20 August 2004, pp. 73-82.

Abrahamsson, P., Warsta, J., Siponen, M. T., & Ronkainen, J., “New Directions on
Agile Methods: A Comparative Analysis.” Proceedings of the 25th International
Conference on Software Engineering, 3-10 May 2003, pp. 244-254.

Abreu, F. B., & Melo W., “Evaluating the Impact of Object-Oriented Design on
Software Quality.” Proceedings of the Third International Software Metrics
Symposium, 25-26 March 1996, pp. 90-99.

Ågerfalk, P. & Fitzgerald, B., “Flexible and Distributed Software Processes: Old
Petunias in New Bowls?” Communications of the ACM, Vol. 49, No. 10, October 2006,
pp. 27-34.

Agile Manifesto, http://agilemanifesto.org/, [Last accessed October 20, 2008].

Almeida, M., Lounis, H., & Melo, W., “An Investigation on the Use of Machine
Learned Models for Estimating Software Correctability.” International Journal of
Software Engineering and Knowledge Engineering, Vol. 9, Issue 5, October 1999,
pp. 565-593.

Alshayeb, M. & Li, W., “An Empirical Study of Relationships Among Extreme
Programming Engineering Activities.” Information and Software Technology, Vol. 48,
No. 11, November 2006, pp. 1068-1072.

Alyshayeb, M., & Li, W., “An Empirical Study of System Design Instability Metric and
Design Evolution in an Agile Software Process.” The Journal of Systems and Software,
Vol. 74, No. 3, February 2005, pp. 269-274.

Alshayeb, M. & Li, W., “An Empirical Validation of Object-Oriented Metrics in Two
Different Iterative Software Processes.” IEEE Transactions on Software Engineering,
Vol. 29, No. 11, November 2003, pp. 1043-1049.

Ambler, S. “Lessons in Agility From Internet-Based Development.” IEEE Software,
Vol. 19, Issue 2, March-April 2002, pp. 66-73.

www.manaraa.com

 142

Anderson, A., Beattie, R., Beck, K., et al. “Chrysler Goes to Extremes.” Distributed
Computing, Vol. 1, No. 10, October 1998, pp. 24 – 28.

Balasubramanian, N., “Object-oriented Metrics.” Proceedings of the 1996 Asia-Pacific
Software Engineering Conference, December 1996, pp. 30-34.

Bansiya, J., “Evaluating Framework Architecture Structural Stability.” ACM Computing
Surveys, Vol. 32, Issue 1, March 2000, Article 18.

Bansiya, J., Etzkorn, L., Davis, C. & Li, W., “A Class Cohesion Metric for Object-
Oriented Designs.” Journal of Object-Oriented Programming, Vol.11, No. 8, January
1999, pp. 47-52.

Bansiya, J., Davis, C., & Etzkorn, L., “An Entropy-Based Complexity Measure for
Object-Oriented Designs.” Theory and Practice of Object Systems, Vol. 5, No. 2, 1999,
pp. 111-118.

Bansiya, J., & Davis C. G., “A Hierarchical Model for Object-Oriented Design Quality
Assessment.” IEEE Transactions on Software Engineering, Vol. 28, No. 1, January
2002, pp. 4-17.

Basili, V., Briand, L., & Melo, W., “A Validation of Object-Oriented Design Metrics as
Quality Indicators.” IEEE Transactions on Software Engineering, Vol. 22, No. 10,
October 1996, pp. 751-761.

Baskerville, R., Levine, L., Pries-Heje, J., Ramesh, B., & Slaughter, S., “How Internet
Software Companies Negotiate Quality.” IEEE Computer, Vol. 34, Issue 5, May 2001,
pp. 51-57.

Baum, L., & Becker, M., “Generic Components to Foster Reuse.” Proceedings of the
37th International Conference On Technology of Object-Oriented Languages and Tools,
20-23 November 2000, pp.266-277.

Beck, K., Extreme Programming Explained: Embrace Change. Reading, MA:
Addison-Wesley, 2000.

Beck, K., “Embracing Change with Extreme Programming.” IEEE Computer, Vol. 32,
Issue 10, October 1999, pp. 70-77.

Berander, P., “Using Students as Subjects in Requirements Prioritization.” Proceedings
of the 2004 International Symposium on Empirical Software Engineering, August 2004,
pp.167-176.

Beynon-Davies, P., & Williams, M. D., “The Diffusion of Information Systems
Development Methods.” Journal of Strategic Information Systems, Vol. 12, Issue 1,
March 2003, pp. 29-46.

www.manaraa.com

 143

Boehm, B., “Get Ready for Agile Methods, with Care.” IEEE Computer, Vol. 35, Issue
1, January 2002, pp. 64-69.

Boehm, B., & Turner, R., “Balancing Agility and Discipline: Evaluating and Integrating
Agile and Plan-Drive Methods.” Proceedings of the 26th International Conference on
Software Engineering, May 2004, pp. 718-719.

Boudnik, K., “Software Reliability.”
http://weblogs.java.net/blog/cos/archive/2007/03/software_reliab_1.html [last accessed
September 18, 2008.].

Brilliant, S., & Knight, J., “Empirical Research in Software Engineering.” ACM
SIGSOFT Software Engineering Notes, Vol. 24, No. 3, May 1999, pp. 45-52.

Brooks, F., “No Silver Bullet: Essence and Accidents of Software Engineering.”
Computer, Vol. 20, No. 4, April 1987, pp. 10-19.

Caldiera, G., & Basili, V., “Identifying and Qualifying Reusable Software
Components.” IEEE Computer, Vol. 24, Issue 2, February 1991, pp. 61-70.

Cantata++ v. 4.0. Bath, England: IPL Information Processing Limited, 2004.

Carver, J., Jaccheri, L., Morasca, S., & Shull, R., “Issues in Empirical Studies with
Students.” Technical Report MSU-060714, July 14, 2006, pp. 1-46.

Carver, J., Jaccheri, L., Morasca, S., & Shull, R., “Issues in Using Students in Empirical
Studies in Software Engineering Education.” Proceedings of the Ninth International
Software Metrics Symposium, September 2000, pp. 239-249.

Chikofsky, E. & Cross, J., “Reverse Engineering and Design Recovery: A Taxonomy.”
IEEE Software, Vol. 7. No. 1, January 1990, pp. 13-17.

Chidamber, S., & Kemerer, C., “A Metrics Suite for Object Oriented Design.” IEEE
Transactions on Software Engineering, June 1994, Vol. 20, No. 6, pp. 476-493.

Ciolkowski, M., Muthig, D., & Rech, J., “Using Academic Courses for Empirical
Validation of Software Development Processes.” Proceedings of the 30th Euromicro
Conference 2004, pp. 354-361.

Clark, B., “Eight Secrets of Software Measurement.” IEEE Software, Vol. 19, Issue 5,
September-October 2002, pp.12-14.

Cohen, A., Doveh, E., & Eick, U., “Statistical Properties of the rWG(J) Index of
Agreement.” Psychological Methods, Vol. 6, No. 3, 2001, pp. 297-310.

www.manaraa.com

 144

Cohen, D., Lindvall, M., & Costa, P., “An Introduction to Agile Methods.” Advances in
Computer, Advances in Software Engineering, 2004, Vol. 62, pp. 1-66.

Cohen, J., “Things I Have Learned (So Far).” American Psychologist, Vol. 15, Issue 12,
Dec. 1990, pp. 1304-1312.

Compare It 3.5. http://www.grigsoft.com/wincmp3.htm#overview, [last accessed
October 12, 2008].

Cook, T., & Campbell, D., Quasi-Experimentation – Design and Analysis Issues for
Field Settings. Boston: Houghton Mifflin Company, 1979.

Coppick, J., & Cheatham, T., “Software Metrics for Object-Oriented Systems.”
Proceedings of the 1992 ACM Annual Conference on Communications CSC ’92, pp.
317-322.

Cortina, J., “What is Coefficient Alpha? An Examination of Theory and Applications.”
Journal of Applied Psychology, Vol. 78, No. 1, 1993, pp. 98-104.

Counsell, S., & Swift, S., “The Interpretation and Utility of Three Cohesion Metrics for
Object-Oriented Design.” ACM Transactions on Software Engineering and
Methodology, Vol. 15, No. 2, April 2006, pp. 123-149.

Dandashi, F., “A Method for Assessing the Reusability of Object-Oriented Code using a
Validated Set of Automated Measurements.” Proceedings of the 2002 ACM
Symposium on Applied Computing, March 2002, pp. 997 – 1003.

Devanbu, P., Karstu, S., Melo, W., & Thomas, W., “Analytical and Empirical
Evaluation of Software Reuse Metrics.” Proceedings of the 18th International
Conference on Software Engineering, 25-30 March 1996, pp. 189-199.

Dingsøyr, T., Dybå, T., & Abrahamsson, P., “A Preliminary Roadmap for Empirical
Research on Agile Software Development,” Agile 2008 Conference, August 2008,
pp. 83-94.

Dybå, T., “An Empirical Investigation of the Key Factors for Success in Software
Process Improvement.” IEEE Transactions on Software Engineering, Vol. 31, No. 5,
May 2005, pp. 410-424.

Dybå, T., & Dingsøyr, T., “Empirical Studies of Agile Software Development: A
Systematic Review.” Information and Software Technology, Vol. 50, No. 9-10, August
2008, pp. 833-859.

Ebert, C., & Morschel, I., “Metrics for Quality Analysis and Improvement of Object-
Oriented Software.” Information and Software Technology, Vol. 39, Issue 7, July 1997,
pp. 497-509.

www.manaraa.com

 145

Elish, M., & Rine, D., “Indicators of Structural Stability of Object-Oriented Designs: A
Case Study.” Proceedings of the 29th Annual IEEE/NASA Software Engineering
Workshop, April 2005, pp. 183-192.

Elish, M., & Rine, D., “Investigation of Metrics for Object-Oriented Design Logical
Stability.” Proceedings of the Seventh European Conference on Software Maintenance
and Reengineering 2003, March 2003, pp. 193-200.

El Emam, K., “A Primer on Object-Oriented Measurement.” Proceedings of the Seventh
International Software Metrics Symposium 2001, April 2001, pp. 185-187.

El Emam, K., Benlarbi, S., Goel, N., & Rai, S., “The Confounding Effect of Class Size
on the Validity of Object-Oriented Metrics.” IEEE Transactions on Software
Engineering, Vol. 27, No. 7, July 2001, pp. 630-650.

El Emam, K., Benlarbi, S., Goel, N., Melo, W., Lounis, H., & Rai, S., “The Optimal
Class Size for Object-Oriented Software.” IEEE Transactions on Software Engineering,
Vol. 28, No. 5, May 2002, pp. 494-509.

Erickson, J., Lyytinen, K., & Siau, K., “Agile Modeling, Agile Software Development,
and Extreme Programming: The State of Research.” Journal of Database Management,
Vol. 16, No. 4, 2005, pp. 88-100.

Esteva, J., & Reynolds, R., “Identifying Reusable Software Components by Induction.”
International Journal of Software Engineering and Knowledge Engineering, Vol. 1,
Issue 3, 1991, pp. 271-292.

Etzkorn, L. H., A Metrics-Based Approach to the Automated Identification of Object-
Oriented Reusable Software Components. Doctoral Dissertation, The University of
Alabama in Huntsville, 1997.

Etzkorn, L. H., & Davis C., “Automatically Identifying Reusable OO Legacy Code.”
Computer, Vol. 30, No. 10, October 1997, pp. 66-71.

Etzkorn, L., Davis, C., & Li, W., "A Practical Look at the Lack of Cohesion in Methods
Metric." Journal of Object-Oriented Programming, Vol. 11, No. 5, Sept. 1998, pp.27-
34.

Etzkorn, L. H., Hughes, W. E., & Davis, C. G., “Automated Reusability Quality
Analysis of OO Legacy Software.” Information and Software Technology, Vol. 43, No.
5, April 2001, pp. 295 – 308.

Etzkorn, L. H., Gholston, S. E., Fortune, J. L., Stein, C. E., Utley, D., Farrington, P. A.,
& Cox, G. W., “A Comparison of Cohesion Metrics for Object-Oriented Systems.”
Information and Software Technology, Vol. 46, No. 10, August 2004, pp. 677-687.

www.manaraa.com

 146

Etzkorn, L. H., Gholston, S., & Hughes, W. E., “A Semantic Entropy Metric.” Journal
of Software Maintenance and Evolution: Research and Practice, Vol. 14, No. 4,
July/August 2002, pp. 293-310.

Fenton, N., “Software Measurement: A Necessary Scientific Basis.” IEEE Transactions
on Software Engineering, Vol. 20, No. 3, March 1994, pp. 199-206.

Fenton, N., & Neil, M., “Software Metrics: Roadmap.” Proceedings of the Conference
on the Future of Software Engineering, May 2000, pp. 359-370.

Fenton, N., & Neil, M., “Software Metrics: Successes, Failures and New Directions.”
The Journal of Systems and Software, Vol. 47, No. 2, July 1999, pp. 149-157.

Fowler, M., Refactoring: Improving the Design of Existing Programs. Boston, MA:
Addison Wesley, 1999.

France, R., Ghosh, S., Song, E., & Kim, D., “A Metamodeling Approach to Pattern-
Based Model Refactoring.” IEEE Software, Vol. 20, Issue 5, September-October 2003,
pp. 52-58.

Fraser, S., & Manci, D., “No Silver Bullet: Software Engineering Reloaded.” IEEE
Software, Vol. 25, Issue 1, Jan-Feb. 2008, pp. 91-94.

Ganesan, K., Khoshgoftaar, T., & Allen, E., “Case-Based Software Quality Prediction.”
International Journal of Software Engineering and Knowledge Engineering, Vol. 10,
No. 2, April 2000, pp. 139-152.

García, F., Bertoa, M., Calero, C., Vallecillo, A., Ruíz, F., Piattini, M., & Genero, M.,
“Towards a Consistent Terminology for Software Measurement.” Information and
Software Technology, Vol. 48, No. 8, August 2006, pp. 631-634.

Gavin, D., “What Does “Product Quality” Really Mean?” Sloan Management Review,
Fall 1984, pp. 25-45.

Genest, C., & Wagner, C., “Further Evidence Against Independence Preservation in
Expert Judgement Synthesis.” Aequationes Mathematicae, Vol. 32, No. 1,
December 1987, pp. 74-86.

Grosser, D., Sahraoui, H., & Valtchev, P., “An Analogy-based Approach for Predicting
Design Stability of Java Classes.” Proceedings of the Ninth International Software
Metrics Symposium, 2003, pp. 252-262.

Grosser, D., Sahraoui, H., & Valtchev, P., “Predicting Software Stability Using Case-
Based Reasoning.” Proceedings of the 17th IEEE International Conference on
Automated Software Engineering, September 2002, pp. 295-298.

www.manaraa.com

 147

Gyimóthy, T., Ferenc, R., & Siket, I., “Empirical Validation of Object-Oriented Metrics
on Open Source Software for Fault Prediction.” IEEE Transactions on Software
Engineering, Vol. 31, No. 10, October 2005, pp. 897 – 910.

Harrison, R., Counsell, S., & Nithi, R., “An Evaluation of the MOOD Set of Object-
Oriented Software Metrics.” IEEE Transactions on Software Engineering, Vol. 24,
No. 6, June 1998, pp. 491-496.

Harrison, W., “An Entropy-Based Measure of Software Complexity.” IEEE
Transactions on Software Engineering, Vol. 18, No. 11, November 1992, pp.1025-
1029.

Heinecke, H., Noack, C., & Schweizer, D., “Software Reuse in Agile Projects.” 4th
International Conference on Object-Oriented and Internet-based Technologies,
Concepts, and Applications for a Networked World (NetObjectDays ’03), 2003.

Highsmith, J., “What is Agile Software Development?” CrossTalk, The Journal of
Defense Software Engineering, October 2002, pp. 4 – 9.

Highsmith, J., & Cockburn, A., “Agile Software Development: The Business of
Innovation.” IEEE Computer, Vol. 34, Issue 9, September 2001, pp. 120-121.

Hislop, G. W., Lutz, M. J., Naveda, J. Fernando, McCracken, W. M., Mead, N. R., &
Williams, L. A., “Integrating Agile Practices into Software Engineering Courses.”
Computer Science Education, 2002, Vol. 12, No. 3, pp. 169-185.

Hitz, M., & Montazeri, B., “Chidamber and Kemerer’s Metrics Suite: A Measurement
Theory Perspective.” IEEE Transactions on Software Engineering, Vol. 22, No. 4,
April 1996, pp. 267-271.

Höst, M., Regnell, B., & Wohlin, C., “Using Students as Subjects – A Comparative
Study of Students and Professionals in Lead-Time Impact Assessment.” Journal of
Empirical Software Engineering, November 2000, Vol. 5, No. 3, pp. 201-214.

Huo, M., Verner, J., Zhu, L., & Barbar, M., “Software Quality and Agile Methods.”
Proceedings of the 28th Annual International Computer Software and Applications
Conference, 2004, Vol. 1, pp. 520-525.

ISO/IEC 9126: Information technology – Software Product Evaluation – Quality
characteristics and guidelines for their use. Geneva: International Organization for
Standardization, 2001.

James, L., Demaree, R., & Wolf, G., “Estimating Within-Group Interrater Reliability
With and Without Response Bias.” Journal of Applied Psychology, Vol. 69, No. 1,
1984, pp. 85-98.

www.manaraa.com

 148

Jeffries, R., Anderson, A., & Henrickson, C., Extreme Programming Installed. Boston,
MA: Addison-Wesley, 2001.

Jeon, S., Lee, J., & Bai, D., “An Automated Refactoring Approach to Design Pattern-
Based Program Transformations in Java Programs.” Proceedings of the Ninth Asia-
Pacific Software Engineering Conference, December 2002, pp. 337-345.

Kähkönen, T., & Abrahamsson, P., “Digging into the Fundamentals of Extreme
Programming.” Proceedings of the 29th Euromicro Conference 2003, 1-6 September
2003, pp. 273-280.

Kalagiakos, P., “The Non-Technical Factors of Reusability.” Euromicro Conference,
2003 Proceedings 29th, 1-6 September 2003, pp. 124-127.

Kataoka, Y., Ernst, M., Griswold, W., & Notkin, D., “Automated Support for Program
Refactoring using Invariants.” Proceedings of the IEEE International Conference on
Software Maintenance, November 2001, pp. 736-743.

Keeney, R. L., & Von Winterfeldt, D., “On the Uses of Expert Judgment on Complex
Technical Problems.” IEEE Transactions on Engineering Management, Vol. 36, No. 2,
May 1989, pp. 83-86.

Knoernschild, K., “The Agile Matrix.” Agile // Journal: An Agile Business Publication,
www.agilejournal.com , 2006. [last accessed September 18, 2008].

Kim, Yongbeom, “A Method for the Classification and Retrieval Problem of Reusable
Software Resources.” Information Processing and Management, Vol. 33, No. 4, 1997,
pp. 513 – 522.

Kim, Yongbeom, & Stohr, E.A., “Software Reuse: Issues and Research Directions.”
Proceedings of the Twenty-Fifth Hawaii International Conference on System Science,
Vol. 4, January 1992, pp. 612 – 623.

Kitchenham, B., Linkman, S., & Law, D., “DESMET: A Methodology for Evaluating
Software Engineering Methods and Tools.” Computing and Control Engineering
Journal, Vol. 8, Issue 3, June 1997, pp. 120-126.

Kitchenham, B., & Pfleeger, S., “Software Quality: The Elusive Target.” IEEE
Software, Vol. 13, Issue 1, pp. 12-21.

Kitchenham, B., Pfleeger, S., & Fenton, N., “Towards a Framework for Software
Measurement Validation.” IEEE Transactions on Software Engineering, Vol. 21, No.
12, December 1995, pp. 929-944.

www.manaraa.com

 149

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., Emam, E., &
Rosenberg, J., “Preliminary Guidelines for Empirical Research in Software
Engineering.” IEEE Transactions on Software Engineering, Vol. 28, No. 8, August
2002, pp. 721-734.

Kivi, J., Haydon, D., Hayes, J., Schneider, R., & Succi, G. “Extreme Programming: A
University Team Design Experience.” 2000 Conference on Electrical and Computer
Engineering, Vol. 2, March 2000, pp. 816-820.

Koru, A., & Tian, J., “An Empirical Comparison and Characterization of High Defect
and High Complexity Modules.” The Journal of Systems and Software, Vol. 67, Issue 3,
September 2003, pp. 153-163.

Kosar, T., Mernick, M., & Žumar, V., “JART: Grammar Based Approach to
Refactoring.” Proceedings of the 28th Annual International Computer Software and
Applications Conference, September 2004, Vol. 1, pp. 502-507.

Kuppuswami, S., Vivekananadan, K., Ramaswamy, P., & Rodrigues, P., “The Effects
of Individual XP Practices on Software Development Effort.” ACM SIGSOFT Software
Engineering Notes, Vol. 28, Issue 6, November 2003, pp. 1-6.

Larman, C. & Basili, V.R., “Iterative and Incremental Development: A Brief History.”
IEEE Software, Vol. 36, Issue 6, June 2003, pp. 47-56.

Layman, L., “Empirical Investigation of the Impact of Extreme Programming Practices
on Software Projects.” Conference on Object Oriented Programming System Languages
and Applications, October 2004, pp. 328-329.

Li, W., Etzkorn, L., Davis, C., & Talburt, J., “An Empirical Study of Object-Oriented
System Evolution.” Information and Software Technology, Vol. 42, Issue 6, April 2000,
pp. 373-381.

Li, W., “Another Metric Suite for Object-Oriented Programming.” The Journal of
Systems and Software, Vol. 44, Issue 2, February 1998, pp. 155-162.

Li, M., & Smidts, C. S., “A Ranking of Software Engineering Measures Based on
Expert Opinion.” IEEE Transactions on Software Engineering, Vol. 29, No. 9,
September 2003, pp. 811-824.

Mambella, E., Ferrari, R., De Carli, F., & Lo Surdo, A., “An Integrated Approach to
Software Reuse Practice.” ACM SIGSOFT Software Engineering Notes Proceedings of
the 1995 Symposium on Software Reusability, Vol. 20, Issue SI, August 1995, pp.63-71.

Mansfield, E., & Helms, B., “Detecting Multicollinearity.” The American Statistician,
Vol. 36, No.3, August 1982, pp. 158-160.

www.manaraa.com

 150

Marcus, A., & Poshyvanyk, D., “The Conceptual Cohesion of Classes.” Proceedings of
the 21st International Conference on Software Maintenance, September 2005, pp.133-
142.

Maruyama, K., & Shima, K., “Automatic Method Refactoring Using Weighted
Dependence Graphs.” Proceedings of the 1999 International Conference on Software
Engineering, May 1999, pp. 236-245.

Mattsson, M., & Bosch, J., “Characterizing Stability in Evolving Frameworks.”
Proceedings of Technology of Object-Oriented Languages and Systems 1999, June
1999, pp. 118-130.

Mayer, T., & Hall, T., “Measuring OO Systems: A Critical Analysis of the MOOD
Metrics.” Proceedings of the Technology of Object-Oriented Languages and Systems,
June 1999, pp. 108-117.

Mens, T., & Tourwé, T., “A Survey of Software Refactoring.” IEEE Transactions on
Software Engineering, Vol. 30, No. 2, February 2004, pp. 126-139.

Meyer, B., “The Reusability Challenge.” Computer, Vol. 29, Issue 2, February 1996,
pp. 76-78.

Meyer, B., “The Role of Object-Oriented Metrics.” Computer, Vol. 31, Issue 11,
November 1998, pp. 123-127.

Mitchell, A., & Power, J., “Run-Time Cohesion Metrics: An Empirical Investigation.”
Proceedings of the International Conference on Software Engineering Research and
Practice, SERP’04, 2004, pp. 532-537.

Moser, R., Sillitti, A., Abrahamsson, P., & Succi, G., “Does Refactoring Improve
Reusability?” Proceedings of the International Conference on Software Reuse, 2006,
pp. 287-297.

Müller, M., “Two Controller Experiments Concerning the Comparison of Pair
Programming to Peer Review.” The Journal of Systems and Software, Vol. 78, Issue 2,
November 2005, pp. 166-179.

Müller, M., & Tichy, W., “Case Study: Extreme Programming in a University
Environment.” Proceedings of the 23rd International Conference on Software
Engineering, May 2001, pp. 537-544.

Mumpower, J., & Stewart, T., “Expert Judgement and Expert Disagreement.” Thinking
and Reasoning, Vol. 2, No. 2/3, 1996, pp. 191-211.

www.manaraa.com

 151

Nazareth, D. L., & Rothenberger, M. A., “Assessing the cost-effectiveness of software
reuse: A model for planned reuse.” The Journal of Systems and Software, Vol. 73,
Issue 2, October 2004, pp. 245-255.

Noble, J., Marshall, Stuart, Marshall, Stephen, & Biddle, R., “Less Extreme
Programming.” Conferences in Research and Practice in Information Technology,
January 2004, Vol. 30, pp. 217-226.

Nerur, S. & Balijepally, V., “Theoretical Reflections on Agile Development
Methodologies.” Communications of the ACM, Vol. 50, No. 3, March 2007, pp. 79-83.

Nunnally, J. C., Psychometric Theory First Edition. New York: McGraw-Hill, 1967.

Olague, H., “Assessing Maintainability: Information Theory, Metrics, and Iterative
Software.” Doctoral Dissertation, University of Alabama in Huntsville, 2006.

Olague, H., Etzkorn, L., Gholston, S., & Quattlebaum, S., “Empirical Validation of
Three Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Classes
Developed Using Highly Iterative or Agile Software Development Processes.” IEEE
Transactions on Software Engineering, Vol. 33, No. 6, June 2007, pp. 402-419.

Olague, H., Etzkorn, L., Li, W., & Cox, G., “Assessing Design Instability in Iterative
(agile) Object-Oriented Projects.” Journal of Software Maintenance and Evolution
Research and Practice, Vol. 18, Issue 4, July/August 2006, pp. 237-266.

Paulk, M.C., “Agile Methodologies and Process Discipline.” CrossTalk, The Journal of
Defense Software Engineering, October 2002, pp 15-18.

Pfleeger, S., & Atlee, J., Software Engineering, Theory and Practice Third Edition.
Upper Saddle River, New Jersey: Pearson Prentice Hall, 2006.

Pfleeger, S., Jeffery, R., Curtis, B., & Kitchenham, B., “Status Report on Software
Measurement.” IEEE Software, Vol. 14, Issue 2, March/April 1997, pp. 33-43.

Poels, G., & Dedene, G.,”Distance-Based Software Measurement: Necessary and
Sufficient Properties for Software Measures.” Information and Software Technology,
Vol. 42, Issue 1, January 2000, pp. 35-46.

Poulin, J. S., “Measuring Software Reusability.” Advances in Software Reusability
1994, Proceedings of the Third International Conference on Software Reuse, 1-4 Nov.
1994, pp. 126-138.

Pressman, R., Software Engineering a Practitioner’s Approach, Sixth Edition. Boston,
MA: McGraw-Hill, 2005.

www.manaraa.com

 152

Prieto-Díaz, R., “Status Report: Software Reusability.” IEEE Software, Vol. 10, Issue 3,
May 1993, pp. 61-66.

Prieto-Díaz, R., & Freeman, P., “Classifying Software for Reusability.” IEEE Software,
Vol.1, Issue 1, January 1987, pp. 6-16.

Price, M. W., & Demurjian, S. A., “Analyzing and Measuring Reusability in Object-
Oriented Design.” Proceedings of the 12th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications, Vol. 32, Issue 10, 1997,
pp. 22-33.

Rakitin, S., “Manifesto Elicits Cynicism.” IEEE Computer, Vol. 34, No. 12, December
2001, p. 4.

Raley, M. A., & Etzkorn, L. H., “Entropy Metrics-Based Approach to Risk Analysis in
the Maintenance Phase of Large-Scale Computer Systems.” The 2004 International
Multi-Conference in Computer Science and Computer Engineering, June 2004, 883-
889.

Repenci, J., “Creativyst Software Stability Ratings,”
http://www.creativyst.com/Doc/Std/StableSW/StabSW.htm [last accessed September
18, 2008].

Rising, L., & Janoff, N., “The Scrum Software Development Process for Small Teams.”
IEEE Software, Vol. 17, Issue 4, July-August 2000, pp. 26-32.

Roden, P., Etzkorn, L., Virani, S., Messimer, S., & Vinz, B., “A Validation of Stability
Metrics.” Proceedings of the International Conference on Software Engineering (SEA
2007), November 2007, pp. 57-65.

Roden, P., Virani, S., Etzkorn, L., & Messimer, S., “An Empirical Study of the
Relationship of Stability Metrics and the QMOOD Quality Models Over Software
Developed Using Highly Iterative or Agile Software Processes.” Seventh IEEE
International Working Conference on Source Code Analysis and Manipulation,
September 2007, pp. 171-179.

Sandri, S., Dubois, D., & Kalfsbeek, H., “Elicitation, Assessment, and Pooling of
Expert Judgments Using Possibility Theory.” IEEE Transactions on Fuzzy Systems,
Vol. 3, No. 3, August 1995, pp. 313-335.

Santos, J., “Cronbach’s Alpha: A Tool for Assessing the Reliability of Scales.” Journal
of Extensions, Vol. 37, No. 2, April 1999, pp. 1-5.

Scott, W., “Extreme Programming Turning the World Upside Down.” Computing &
Control Engineering Journal, Vol. 14, Issue 3, June/July 2003, pp. 18-23.

www.manaraa.com

 153

Schach, S., & Yang, X., “Metrics for Targeting Candidates for Reuse: An Experimental
Approach.” Proceedings of the 1995 ACM Symposium on Applied Computing, 1995, pp.
379-383.

Schroeder, M., “A Practical Guide to Object-Oriented Metrics.” IT Professional, Vol. 1,
Issue 6, November-December 1999, pp. 30-36.

Seskin, D., Handbook of Parametric and Nonparametric Statistical Procedures. Boca
Raton: Chapman & Hall/CRC, 2004.

Shanteau, J., “Competence in Experts: The Role of Task Characteristics.”
Organizational Behavior and Human Decision Processes, Vol. 53, 1992, pp. 252-266.

Sjøberg, D., Anda, B., Arisholm, E., Dybå, T., Jørgensen, M. Karahasanovic, A., Koren,
E., & Vokác, M., “Conducting Realistic Experiments in Software Engineering.”
Proceedings of the 2002 International Symposium on Empirical Software Engineering,
October 2002, pp. 17-26.

Sjøberg, D., Dybå, T., & Jørgensen, M., “The Future of Empirical Methods in Software
Engineering Research,” Future of Software Engineering 2007, May 2007, pp. 358-378.

Smith, M., & Sodhi, J., “Marching Towards a Software Reuse Future.” ACM Ada
Letters, Vol. XIV, Number 6, November/December 1994, pp. 62-72.

Smith, S., & Stoecklin, S., “What We Can Learn From Extreme Programming.” Journal
of Computing Science in Colleges, Vol. 17, Issue 2, December 2001, pp. 144-151.

Snyder, A., “Encapsulation and Inheritance in Object-Oriented Programming
Languages,” Proceedings of OOPSLA ’86, September 1986, pp. 38-45.

Synchronizer® 9.1 XL User Manual. Zurich, Switzerland: XL Consulting GmbH,
2006.

Tang, M., Kao, M., & Chan, M., “An Empirical Study on Object-Oriented Metrics.”
Proceedings of the Sixth International Software Metrics Symposium, November 1999,
pp. 242-249.

Tichelaar, S., Ducasse, S., Demer, S., & Nierstrasz, O., “A Meta-model for Language-
Independent Refactoring.” Proceedings of the International Symposium on Principles of
Software Evolution, November 2000, pp. 154-164.

Tonu, S., Ashkan, A., & Tahvildari, L., “Evaluating Architectural Stability Using a
Metrics-Based Approach.” Proceedings of the 10th European Conference on Software
Maintenance and Reengineering, March 2006, pp. 261-270.

www.manaraa.com

 154

Torres, W. R., & Samadzadeh, M. H., “Software Reuse and Information Theory Based
Metrics.” Proceedings of the 1991 Symposium on Applied Computing, April 1991, pp.
437-446.

Washizaki, H., Yamamoto, H., & Fukazawa, Y., “A Metrics Suite for Measuring
Reusability of Software Components.” Proceedings of the Ninth International Software
Metrics Symposium, September 2003, pp. 211-223.

Weyuker, E., “Evaluating Software Complexity Measures.” IEEE Transactions on
Software Engineering, Vol. 14, No. 9, September 1988, pp. 1357-1365.

Williams , L., “Integrating Pair Programming into a Software Development Process.”
Proceeding of the 14th Conference on Software Engineering Education and Training,
February 2001, pp. 27-36.

Williams, L., “The XP Programmer: The Few-Minutes Programmer.” IEEE Software,
Vol. 20, Issue 3, May/June 2003, pp. 16-20.

Williams, L. A., & Kessler, R. R., “All I Ever Needed to Know About Pair
Programming I Learned in Kindergarten.” Communications of the ACM, Vol. 43, No.
5, May 2000, pp. 108-114.

Williams, L. A., & Kessler, R. R., “Experimenting with Industry’s Pair-Programming
Model in the Computer Science Classroom.” Journal of Computer Science Education
Vol. 10, No. 4, December 2000.

Williams, L. A., Kessler, R. R., Cunningham, W., & Jeffries, R., “Strengthening the
Case for Pair Programming.” IEEE Software, Vol. 17, Issue 4, July 2000, pp. 19-25.

Williams, L. A., & Upchurch, R. L., “In Support of Student Pair-Programming.” ACM
SIGCSE Bulletin Proceedings of the Thirty-second SIGCSE Technical Symposium on
Computer Science Education, February 2001, Vol. 33, Issue 1, pp. 327 – 331.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., & Wesslén, A.,
Experimentation in Software Engineering: An Introduction. Boston: Kluwer Academic,
2000.

Wolf, M., Bowyer, K., Gotterbarn, D., & Miller, K., “Open Source Software:
Intellectual Challengers to the Status Quo.” SIGCSE’02, February 27-March 3, 2002,
pp. 317-318.

Wood, W., & Kleb, W., “Exploring XP for Scientific Research.” IEEE Software, Vol.
20, Issue 3, May-June 2003, pp. 30-36.

www.manaraa.com

 155

Zannier, C., Melnik, G., & Maurer, F., “On the Success of Empirical Studies in the
International Conference on Software Engineering.” Proceedings of the 28th
International Conference on Software Engineering, May 2006, pp. 341-350.

Zuse, Horst, “Foundations of Object-Oriented Software Measures.” Proceedings of the
3rd International Software Metrics Symposium, March 1996, pp. 75-88.

